Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 610(7931): 381-388, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198800

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses1-3. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins4-8, particularly those containing post-translational modifications required for transcriptional regulation9-11. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation12-14. However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.


Assuntos
COVID-19 , Epigênese Genética , Histonas , Interações entre Hospedeiro e Microrganismos , Mimetismo Molecular , SARS-CoV-2 , Proteínas Virais , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Epigenoma/genética , Histonas/química , Histonas/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Nature ; 583(7818): 852-857, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699416

RESUMO

Complex organisms can rapidly induce select genes in response to diverse environmental cues. This regulation occurs in the context of large genomes condensed by histone proteins into chromatin. The sensing of pathogens by macrophages engages conserved signalling pathways and transcription factors to coordinate the induction of inflammatory genes1-3. Enriched integration of histone H3.3, the ancestral histone H3 variant, is a general feature of dynamically regulated chromatin and transcription4-7. However, how chromatin is regulated at induced genes, and what features of H3.3 might enable rapid and high-level transcription, are unknown. The amino terminus of H3.3 contains a unique serine residue (Ser31) that is absent in 'canonical' H3.1 and H3.2. Here we show that this residue, H3.3S31, is phosphorylated (H3.3S31ph) in a stimulation-dependent manner along rapidly induced genes in mouse macrophages. This selective mark of stimulation-responsive genes directly engages the histone methyltransferase SETD2, a component of the active transcription machinery, and 'ejects' the elongation corepressor ZMYND118,9. We propose that features of H3.3 at stimulation-induced genes, including H3.3S31ph, provide preferential access to the transcription apparatus. Our results indicate dedicated mechanisms that enable rapid transcription involving the histone variant H3.3, its phosphorylation, and both the recruitment and the ejection of chromatin regulators.


Assuntos
Histonas/química , Histonas/metabolismo , Transcrição Gênica , Regulação para Cima/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Quinase I-kappa B/química , Quinase I-kappa B/metabolismo , Macrófagos/metabolismo , Masculino , Metilação , Camundongos , Modelos Moleculares , Fosforilação
3.
Genome Res ; 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104286

RESUMO

Epigenetic regulation plays a critical role in many neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). In particular, many such disorders are the result of mutations in genes that encode chromatin-modifying proteins. However, although these disorders share many features, it is unclear whether they also share gene expression disruptions resulting from the aberrant regulation of chromatin. We examined five chromatin modifiers that are all linked to ASD despite their different roles in regulating chromatin. Specifically, we depleted ASH1L, CHD8, CREBBP, EHMT1, and NSD1 in parallel in a highly controlled neuronal culture system. We then identified sets of shared genes, or transcriptional signatures, that are differentially expressed following loss of multiple ASD-linked chromatin modifiers. We examined the functions of genes within the transcriptional signatures and found an enrichment in many neurotransmitter transport genes and activity-dependent genes. In addition, these genes are enriched for specific chromatin features such as bivalent domains that allow for highly dynamic regulation of gene expression. The down-regulated transcriptional signature is also observed within multiple mouse models of NDDs that result in ASD, but not those only associated with intellectual disability. Finally, the down-regulated transcriptional signature can distinguish between control and idiopathic ASD patient iPSC-derived neurons as well as postmortem tissue, demonstrating that this gene set is relevant to the human disorder. This work identifies a transcriptional signature that is found within many neurodevelopmental syndromes, helping to elucidate the link between epigenetic regulation and the underlying cellular mechanisms that result in ASD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa