Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(11): 844, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36175696

RESUMO

This study assessed the surface water quality in Can Tho city, Vietnam, using a combination of water quality, pollution indices, and multivariate statistical methods. Surface water samples were collected at 38 locations with a frequency of 4 times in 2020 (March, June, September, and December) and at the time of high and low tides to analyze for 18 indicators. Results showed that surface water in Can Tho city was contaminated with organic matters and microorganisms. Parameters of pH, turbidity, total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), N-NH4+, and N-NO3- are significantly increased with low tide. Comprehensive pollution index indicated mild to moderately polluted water in March, June, and September and moderately to severely polluted water in December. Organic pollution index revealed that surface water quality in all locations was polluted with organic matters during the study period especially in March and December. The water quality index also indicated that water quality in December was mostly classified as moderate and bad. The principal component analysis indicated that surface water quality could be affected by five main sources that explain 64.40% of the total variation. This significantly caused the fluctuation of pH, temperature, turbidity, TSS, DO, BOD, COD, N-NH4+, P-PO43-, Fe, and As, which should all be the focus for future monitoring. Surface water management in Can Tho city should also emphasize on the wastewater from urbanization and agriculture, which has been recognized by the analysis to have highest contribution to organic, nutrient, and microbial pollutants in the water bodies.


Assuntos
Poluentes Ambientais , Qualidade da Água , Monitoramento Ambiental , Oxigênio , Vietnã , Águas Residuárias
2.
Water Sci Technol ; 79(5): 1007-1016, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31025981

RESUMO

Occurrence of silver nanoparticles (AgNPs) in wastewater treatment systems could impact the ammonia oxidation (AO). This study investigated the reduction of AgNPs and dissociated silver ion (Ag+) toxicity on nitrifying sludge using cell entrapment technique. Three entrapment materials, including barium alginate (BA), polyvinyl alcohol (PVA), and a mixture of polyvinyl alcohol and barium alginate (PVA-BA), were applied. The BA beads provided the highest reduction of silver toxicity (up to 90%) and durability. Live/dead assays showed fatality of entrapped cells after exposure to AgNPs and Ag+. The maximum AO rate of the BA-entrapped cells was 5.6 mg-N/g-MLSS/h. The AO kinetics under the presence of silver followed an uncompetitive inhibition kinetic model. The experiments with AgNPs and Ag+ gave the apparent maximum AO rates of 4.2 and 4.8 mg-N/g-MLSS/h, respectively. The apparent half-saturation constants of the BA-entrapped cells under the presence of silver were 10.5 to 13.4 mg/L. Scanning electron microscopic observation coupled with energy-dispersive X-ray spectroscopy indicated no silver inside the beads. This elucidates that the silver toxicity can be reduced by preventing silver penetration through the porous material, leading to less microbial cell damage. This study revealed the potential of the entrapment technology for mitigating the effect of silver species on nitrification.


Assuntos
Amônia/metabolismo , Nanopartículas Metálicas/toxicidade , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental/efeitos dos fármacos , Nitrificação , Esgotos , Prata
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124806, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39018674

RESUMO

Dimethylaniline-substituted aza-BODIPY dyes (DA, DM, DP) were designed and synthesized aiming for ion detection. The Zn2+ recognition ability was found in all compounds and the binding mechanism was possibly via dimethylaniline sites linked to the aza-BODIPY core. Upon Zn2+ addition, the new absorption band and the color change occurred due to the altered charge transfer of the adducts. The custom-made colorimeter was successfully integrated into the dye's application, demonstrating a good linear relationship between resistance values and Zn2+ concentration. The chromophore test strips were fabricated and exhibited distinct color changes upon aqueous Zn2+ exposure. The compound DA also exhibits logical behavior with DA-Zn2+-Cu2+ system. In terms of environmental hazards, the compounds exhibited no adverse effect on Pseudomonas putida at the concentration level of 0.2 mg/mL. These findings indicated that all synthesized aza-BODIPYs might be suitable for chemosensor probes for Zn2+ detection with possibly low environmental risk.

4.
Sci Rep ; 13(1): 4380, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928671

RESUMO

Groundwater serves as an important resource for people in the Mekong Delta, but its quality has been continuously declined from human activities. Current status of the groundwater quality needs to be evaluated for sustainable groundwater resource management. This study aimed to evaluate the groundwater quality for drinking purposes in the Mekong Delta, Vietnam, using multivariate statistical methods and integrated-weight water quality index. Data comprised 8 water quality parameters (pH, total hardness, nitrate (NO3-), iron (Fe), lead (Pb), mercury (Hg), arsenic (As), and coliforms) obtained from 64 observation wells in An Giang province, Dong Thap province, and Can Tho city, were analyzed by cluster analysis (CA), principal component analysis (PCA), and integrated-weight water quality index (IWQI). The results indicated that most parameters were within standards while excessive hardness and Fe contamination were found in some regions. More than 80% of samples were detected with serious coliform contamination. The CA results revealed that groundwater quality heavily depend on geological locations with 4 clusters of the sampling locations. Three principal components obtained from PCA could explain 77.2% of the groundwater quality variation. The IWQI values ranging from 4 to 2761 classified groundwater quality as excellent (53.1%), good (25%), poor (9.4%), very poor (4.7%), and undrinkable (7.8%), which were associated with coliform contamination. These findings have provided insights into the groundwater quality status in the region, which can benefit in developing a water protection strategy.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Vietnã , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Qualidade da Água , Água Potável/análise
5.
ACS Omega ; 7(48): 44448-44457, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506133

RESUMO

The compound (1E,2E)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine (1) was investigated for its chemosensor application. The colorimetric response of 1 with various ions was investigated, and the selective optical change upon mixing with Cu2+ was found. The Cu2+ binding stoichiometry of 1 derived from Job's plot and the in silico study give us the tentative structural detail of the binding mode of 1 and Cu2+ being 1:1. The binding constant between 1 and Cu2+ from the Benesi-Hildebrand plot was 1.49 × 104 M-1. The limit of detection of 1 in Cu2+ detection was 0.64 µM (0.040 ppm), which is much lower than the WHO and US EPA maximum allowable Cu2+ level in drinking water (2 and 1.3 ppm, respectively). The custom-built colorimeter demonstrates a good linear relationship between Cu2+ concentration and electrical resistance (Ω) upon 1-Cu2+ ion binding.

6.
Sci Total Environ ; 754: 142074, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254897

RESUMO

This research investigates the characteristics of dissolved organic matter (DOM) removal by synthesized cotton-fiber adsorbents using unknown screening analysis with high resolution and accurate mass spectrometry. Molecular characteristics of DOM removed by adsorbents were investigated semiquantitatively and unknown disinfection byproduct (DBP) formation potentials were also investigated. Adsorbents were modified using ferric nitrate to increase the magnetic property. The XRD pattern showed Fe-containing crystalline structures in the modified adsorbent (M-CF). The M-CF possessed higher mesopore volume, which enhanced the dissolved organic carbon (DOC) removal efficiency to 74.50% (compared to 32.12% in the unmodified CF adsorbent). The kinetics experiment showed that both adsorbents were better fitted to pseudo-second orders than pseudo-first orders. The initial rate constant was higher in M-CF (1.40 mg/g min) than in CF (0.02 mg/g min) treatments due to the higher mesopore volume in M-CF. M-CF removed almost 700 carbon­hydrogen­oxygen based DOMs (CHO features), 300 more CHO features than CF. CF selectively adsorbed only higher-molecular-weight (MW) CHO features (more CH2 groups), while the mesopores in M-CF removed DOM with lower MW (fewer CH2 groups) that were refractory to CF. The low MW DOM removed only by M-CF mesopore exhibited more oxidized (positive carbon oxidation state, Cos) and saturated characters (negative oxygen-subtracted double bond equivalent per carbon, (DBE-O)/C). After chlorination, over 50 unknown DBPs were detected, 33 of which were commonly found in all samples. M-CF decreased unknown formation potential more than CF. However, adsorption of M-CF and CF before chlorination resulted in different remaining precursors to water chlorination and formed unique DBPs from those precursors.

7.
Membranes (Basel) ; 10(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076583

RESUMO

This work investigates polyvinylidene fluoride (PVDF) membrane modification to enhance its hydrophilicity and antibacterial properties. PVDF membranes were coated with nanoparticles of titanium dioxide (TiO2-NP) and silver (AgNP) at different concentrations and coating times and characterized for their porosity, morphology, chemical functional groups and composition changes. The results showed the successfully modified PVDF membranes containing TiO2-NP and AgNP on their surfaces. When the coating time was increased from 8 to 24 h, the compositions of Ti and Ag of the modified membranes were increased from 1.39 ± 0.13 to 4.29 ± 0.16 and from 1.03 ± 0.07 to 3.62 ± 0.08, respectively. The water contact angle of the membranes was decreased with increasing the coating time and TiO2-NP/AgNP ratio. The surface roughness and permeate fluxes of coated membranes were increased due to increased hydrophilicity. Antimicrobial and antifouling properties were investigated by the reduction of Escherichia coli cells and the inhibition of biofilm formation on the membrane surface, respectively. Compared with that of the original PVDF membrane, the modified membranes exhibited antibacterial efficiency up to 94% against E. coli cells and inhibition up to 65% of the biofilm mass reduction. The findings showed hydrophilic improvement and an antimicrobial property for possible wastewater treatment without facing the eminent problem of biofouling.

8.
Chemosphere ; 224: 461-469, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30831497

RESUMO

Two-dimensional electrophoretic, western blotting, and quantitative polymerase chain reaction analyses of Escherichia coli cells exposed to pristine single walled carbon nanotubes (SWCNTs), and hydroxyl and carboxylic functionalized SWCNTs (SWCNT-OHs and SWCNT-COOHs) were conducted. SWCNT concentration and length were experimental variables. Exposing E. coli cells to SWCNTs led to changes in protein and gene expressions. Several proteins altered their regulations at a low SWCNT concentration (10 µg/ml) and were shut down at a high SWCNT concentration (100 µg/ml). The expressions of the phage shock protein (psp) operon including pspA, pspB, and pspC genes responded to the membrane stressors, SWCNTs, were also examined. While pspA and pspC expressions were influenced by the length, concentration, and functional groups of SWCNTs, pspB expression was not induced by SWCNTs. The alterations in phage shock protein and gene expressions indicated that SWCNTs caused cell membrane perturbation.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Nanotubos de Carbono/efeitos adversos , Proteínas de Bactérias/genética , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética
9.
Chemosphere ; 188: 199-207, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28886554

RESUMO

Susceptibility of biofilms with different physical structures to silver nanoparticles (AgNPs) was studied. Biofilms of Pseudomonas putida KT2440 were formed in batch conditions under different carbon sources (glucose, glutamic acid, and citrate), glucose concentrations (5 and 50 mM), and incubation temperatures (25 and 30 °C). The biofilms were observed using confocal laser scanning microscopy for their physical characteristics (biomass amount, thickness, biomass volume, surface to volume ratio, and roughness coefficient). The biofilms forming under different growth conditions exhibited different physical structures. The biofilm thickness and the roughness coefficient were found negatively and positively correlated with the biofilm susceptibility to AgNPs, respectively. The effect of AgNPs on biofilms was low (1-log reduction of cell number) when the biofilms had high biomass amount, high thickness, high biomass volume, low surface to volume ratio, and low roughness coefficient. Furthermore, the extracellular polymeric substance (EPS) stripping process was applied to confirm the dependence of susceptibility to AgNPs on the structure of biofilm. After the EPS stripping process, the biofilms forming under different conditions showed reduction in thickness and biomass volume, and increases in surface to volume ratio and roughness coefficient, which led to more biofilm susceptibility to AgNPs. The results of this study suggest that controlling the growth conditions to alter the biofilm physical structure is a possible approach to reduce the impact of AgNPs on biofilms in engineered and natural systems.


Assuntos
Biofilmes/crescimento & desenvolvimento , Nanopartículas Metálicas/toxicidade , Pseudomonas putida/efeitos dos fármacos , Prata/toxicidade , Biofilmes/efeitos dos fármacos , Biomassa , Nanopartículas Metálicas/química , Microscopia Confocal , Prata/química
10.
Environ Sci Pollut Res Int ; 24(10): 9229-9240, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28224336

RESUMO

Silver nanoparticles (AgNPs) are widely used in commercial products because of their excellent antimicrobial activity. Entrance of AgNPs and its released Ag ions (Ag+) into wastewater treatment plants could harm ammonia oxidation (AO) process resulting in environmental problems. This study investigated inhibitory kinetics and mechanism of AO from nitrifying sludge influenced by AgNPs and Ag+. The findings demonstrated that AgNPs and Ag+ adversely influenced on AO. Silver ions were more toxic to AO than AgNPs, which was indicated by the lower inhibitory constant (K i ) of 0.29 mg/L compared to that of AgNPs (K i of 73.5 mg/L). Over the experimental period of 60 h, AgNPs at 1, 10, and 100 mg/L released Ag+ in the average concentrations of 0.059, 0.171, and 0.503 mg/L, respectively. Silver nanoparticles of 1-100 mg/L inhibited AO by 45-74%, whereas Ag+ of 0.05-0.50 mg/L inhibited AO by 53-94%. This suggested that the AgNP toxicity mainly derived from the liberated Ag+. Scanning electron microscopy results revealed that AgNPs attached on microbial cell surfaces, and both AgNPs and Ag+ induced cell morphological change from rod shape to shorter rod shape. Transmission electron microscopy showed that AgNPs and Ag+ diminished the thickness of the outer layer and reduced the density of internal parts of the exposed microbial cells, which could be the reasons for the morphology change. Live/dead results also confirmed that AgNPs and Ag+ damaged membrane integrity of cells in the nitrifying sludge. This study suggested that the primary mechanism for toxicity of AgNPs was the liberation of Ag+ and then both of silver species caused cell death.


Assuntos
Esgotos , Prata/toxicidade , Amônia/metabolismo , Íons , Cinética , Nanopartículas Metálicas/toxicidade
11.
J Hazard Mater ; 290: 127-33, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25756827

RESUMO

This study determined the effect of silver nanoparticles (AgNPs) on Pseudomonas putida KT2440 biofilms at different stages of maturity. Three biofilm stages (1-3, representing early to late stages of development) were identified from bacterial adenosine triphosphate (ATP) activity under static (96-well plate) and dynamic conditions (Center for Disease Control and Prevention biofilm reactor). Extracellular polymeric substance (EPS) levels, measured using crystal violet and total carbohydrate assays, and expression of the EPS-associated genes, csgA and alg8, supported the conclusion that biofilms at later stages were older than those at earlier stages. More mature biofilms (stages 2 and 3) showed little to no reduction in ATP activity following exposure to AgNPs. In contrast, the same treatment reduced ATP activity by more than 90% in the less mature stage 1 biofilms. Regardless of maturity, biofilms with EPS stripped off were more susceptible to AgNPs than controls with intact EPS, demonstrating that EPS is critical for biofilm tolerance of AgNPs. The findings from this study show that stage of maturity is an important factor to consider when studying effect of AgNPs on biofilms.


Assuntos
Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas , Pseudomonas putida/efeitos dos fármacos , Compostos de Prata/farmacologia , Difosfato de Adenosina/análise , Difosfato de Adenosina/metabolismo , Biofilmes/crescimento & desenvolvimento , Pseudomonas putida/crescimento & desenvolvimento , RNA Bacteriano/biossíntese , RNA Bacteriano/isolamento & purificação
12.
Environ Sci Pollut Res Int ; 19(1): 169-76, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21701861

RESUMO

BACKGROUND, AIM, AND SCOPE: The optimal conditions of o-toluidine degradation by fluidized-bed Fenton process were determined using Box-Behnken designs (BBD). The BBD can be used to find the optimal conditions in multivariable systems. The optimal conditions obtained by the design were further applied in the kinetic analysis of o-toluidine oxidation in fluidized-bed Fenton process. MATERIALS AND METHODS: The 1.35-L fluidized-bed reactor used in all experiments was a cylindrical vessel with an inlet, outlet, and recirculation pump. The o-toluidine was determined by high-performance liquid chromatography. RESULTS AND DISCUSSION: Analytical results indicated that pH, Fe(2+), and H(2)O(2) were significant factors in o-toluidine and chemical oxygen demand (COD) removal, but loading carrier was not. The pH significantly affected not only o-toluidine degradation, but also total iron removal. The predicted conditions for optimal removal of 1 mM of o-toluidine using 100 g of carriers were pH 3 ± 0.5, 1 mM of Fe(2+), and 17 mM of H(2)O(2). Removal of o-toluidine and COD in the actual experiment was higher than predicted, whereas removal of total iron was slightly lower. The kinetic study showed that the initial rate and rate constant (k) of o-toluidine degradation in the fluidized-bed Fenton process correlated Fe(2+) concentration. In the Fe(2+)/H(2)O(2) stage, high concentration of H(2)O(2) produced a scavenging effect. CONCLUSIONS: The predicted removal efficiencies of o-toluidine and COD were 90.2% and 41.4%, respectively. Moreover, the removals of o-toluidine and COD in the actual experiment were 99.8% and 61.8%, respectively.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Toluidinas/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Análise da Demanda Biológica de Oxigênio , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Cinética , Modelos Estatísticos , Oxirredução , Toluidinas/química , Toluidinas/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa