Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 83(13): 5207-13, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21604670

RESUMO

Low-flow push-pull perfusion is a sampling method that yields better spatial resolution than competitive methods like microdialysis. Because of the low flow rates used (50 nL/min), it is challenging to use this technique at high temporal resolution which requires methods of collecting, manipulating, and analyzing nanoliter samples. High temporal resolution also requires control of Taylor dispersion during sampling. To meet these challenges, push-pull perfusion was coupled with segmented flow to achieve in vivo sampling at 7 s temporal resolution at 50 nL/min flow rates. By further miniaturizing the probe inlet, sampling with 200 ms resolution at 30 nL/min (pull only) was demonstrated in vitro. Using this method, L-glutamate was monitored in the striatum of anesthetized rats. Up to 500 samples of 6 nL each were collected at 7 s intervals, segmented by an immiscible oil and stored in a capillary tube. The samples were assayed offline for L-glutamate at a rate of 15 samples/min by pumping them into a reagent addition tee fabricated from Teflon where reagents were added for a fluorescent enzyme assay. Fluorescence of the resulting plugs was monitored downstream. Microinjection of 70 mM potassium in physiological buffered saline evoked l-glutamate concentration transients that had an average maxima of 4.5 ± 1.1 µM (n = 6 animals, 3-4 injections each) and rise times of 22 ± 2 s. These results demonstrate that low-flow push-pull perfusion with segmented flow can be used for high temporal resolution chemical monitoring and in complex biological environments.


Assuntos
Ácido Glutâmico/metabolismo , Animais , Encéfalo/metabolismo , Corantes Fluorescentes , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Fluorescência
2.
Anal Chem ; 83(22): 8439-47, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21932784

RESUMO

The feasibility of implementing pyrosequencing chemistry within droplets using electrowetting-based digital microfluidics is reported. An array of electrodes patterned on a printed-circuit board was used to control the formation, transportation, merging, mixing, and splitting of submicroliter-sized droplets contained within an oil-filled chamber. A three-enzyme pyrosequencing protocol was implemented in which individual droplets contained enzymes, deoxyribonucleotide triphosphates (dNTPs), and DNA templates. The DNA templates were anchored to magnetic beads which enabled them to be thoroughly washed between nucleotide additions. Reagents and protocols were optimized to maximize signal over background, linearity of response, cycle efficiency, and wash efficiency. As an initial demonstration of feasibility, a portion of a 229 bp Candida parapsilosis template was sequenced using both a de novo protocol and a resequencing protocol. The resequencing protocol generated over 60 bp of sequence with 100% sequence accuracy based on raw pyrogram levels. Excellent linearity was observed for all of the homopolymers (two, three, or four nucleotides) contained in the C. parapsilosis sequence. With improvements in microfluidic design it is expected that longer reads, higher throughput, and improved process integration (i.e., "sample-to-sequence" capability) could eventually be achieved using this low-cost platform.


Assuntos
DNA Fúngico/análise , DNA Fúngico/genética , Técnicas Analíticas Microfluídicas/métodos , Análise de Sequência de DNA/métodos , Sequência de Bases , Candida/genética , Desoxirribonucleotídeos/análise , Desoxirribonucleotídeos/genética , Desoxirribonucleotídeos/metabolismo , Eletrodos , Enzimas/química , Enzimas/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Sequência de DNA/instrumentação , Moldes Genéticos
3.
Lab Chip ; 8(12): 2091-104, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19023472

RESUMO

Point of care testing is playing an increasingly important role in improving the clinical outcome in health care management. The salient features of a point of care device are rapid results, integrated sample preparation and processing, small sample volumes, portability, multifunctionality and low cost. In this paper, we demonstrate some of these salient features utilizing an electrowetting-based Digital Microfluidic platform. We demonstrate the performance of magnetic bead-based immunoassays (cardiac troponin I) on a digital microfluidic cartridge in less than 8 minutes using whole blood samples. Using the same microfluidic cartridge, a 40-cycle real-time polymerase chain reaction was performed within 12 minutes by shuttling a droplet between two thermal zones. We further demonstrate, on the same cartridge, the capability to perform sample preparation for bacterial infectious disease pathogen, methicillin-resistant Staphylococcus aureus and for human genomic DNA using magnetic beads. In addition to rapid results and integrated sample preparation, electrowetting-based digital microfluidic instruments are highly portable because fluid pumping is performed electronically. All the digital microfluidic chips presented here were fabricated on printed circuit boards utilizing mass production techniques that keep the cost of the chip low. Due to the modularity and scalability afforded by digital microfluidics, multifunctional testing capability, such as combinations within and between immunoassays, DNA amplification, and enzymatic assays, can be brought to the point of care at a relatively low cost because a single chip can be configured in software for different assays required along the path of care.


Assuntos
Microfluídica/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Análise Química do Sangue , DNA/química , Humanos , Imunoensaio , Luminescência , Microfluídica/instrumentação , Fatores de Tempo
4.
Adv Drug Deliv Rev ; 56(2): 185-98, 2004 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-14741115

RESUMO

Efficient drug delivery and administration are needed to realize the full potential of molecular therapeutics. Integrated microsystems that incorporate extremely fast sensory and actuation capabilities can fulfill this need for efficient drug delivery tools. Photolithographic technologies borrowed from the semiconductor industry enable mass production of such microsystems. Rapid prototyping allows for the quick development of customized devices that would accommodate for diverse therapeutic requirements. This paper reviews the capabilities of existing microfabrication and their applications in controlled drug delivery microsystems. The next generation of drug delivery systems--fully integrated and self-regulating--would not only improve drug administration, but also revolutionize the health-care industry.


Assuntos
Engenharia Química/métodos , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Desenho de Equipamento , Silicones
5.
Electrophoresis ; 28(24): 4572-81, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18072223

RESUMO

We demonstrate dielectrophoretic (DEP) potential wells using pairs of insulating oil menisci to shape the DC electric field. These oil menisci are arranged in a configuration similar to the quadrupolar electrodes, typically used in DEP, and are shown to produce similar field gradients. While the one-pair well produces a focusing effect on particles in flow, the two-pair well results in creating spatial traps against crossflows. Uncharged polystyrene particles were used to map the DEP force fields and the experimental observations were compared against the field profiles obtained by numerically solving Maxwell's equations. We demonstrate trapping of a single particle due to negative DEP against a pressure-driven crossflow. This can be easily extended to trap and hold cells and other objects against flow for a longer time. We also show the results of particle trapping experiments performed to observe the effect of adjusting the oil menisci and the gap between two pairs of menisci in a four-menisci configuration on the nature of the DEP well formed at the center. A design parameter, Theta, capturing the dimensions of the DEP energy well, is defined and simulations exploring the effects of different geometric features on Theta are presented.


Assuntos
Eletrodos , Eletroforese/métodos , Dimetilpolisiloxanos , Silicones
6.
Synapse ; 61(7): 500-14, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17415796

RESUMO

Amphetamine and its derivatives are important drugs of abuse causing both short-term excitatory and long-term addictive effects. The short-term excitatory effects are linked to amphetamine's ability to maintain high levels of dopamine (DA) outside the cell both by inhibiting DA reuptake after synaptic transmission and by enhancing the efflux of DA from the dopaminergic cells. The molecular mechanisms by which amphetamine elicits the efflux of DA and similar monoamines are still unclear. Recent literature data suggest that trafficking of the monoamine transporters is a phenomenon that underlies observed changes in amphetamine-induced monoamine reuptake and efflux. We develop an ordinary differential equation model incorporating the diverse mechanistic details behind amphetamine-induced DA efflux and demonstrate its utility in describing our experimental data. We also demonstrate an experimental method to track the time-varying concentration of membrane-bound transporter molecules from the DA efflux data. The good fit between our model and the experimental data supports the hypothesis that amphetamine-induced transporter trafficking is necessary to produce extended efflux of DA. This model can explain the relative significance of different processes associated with DA efflux at different times and at different concentration ranges of amphetamine and DA.


Assuntos
Anfetamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Modelos Biológicos , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Humanos , Transporte Proteico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa