Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 208: 153-164, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543166

RESUMO

Diabetes is one of the significant risk factors for ischemic stroke. Hyperglycemia exacerbates the pathogenesis of stroke, leading to more extensive cerebral damage and, as a result, to more severe consequences. However, the mechanism whereby the hyperglycemic status in diabetes affects biochemical processes during the development of ischemic injury is still not fully understood. In the present work, we record for the first time the real-time dynamics of H2O2 in the matrix of neuronal mitochondria in vitro in culture and in vivo in the brain tissues of rats during development of ischemic stroke under conditions of hyperglycemia and normal glucose levels. To accomplish this, we used a highly sensitive HyPer7 biosensor and a fiber-optic interface technology. We demonstrated that a high glycemic status does not affect the generation of H2O2 in the tissues of the ischemic core, while significantly exacerbating the consequences of pathogenesis. For the first time using Raman microspectroscopy approach, we have shown how a sharp increase in the blood glucose level increases the relative amount of reduced cytochromes in the mitochondrial electron transport chain in neurons under normal conditions in awake mice.


Assuntos
Isquemia Encefálica , Diabetes Mellitus , Hiperglicemia , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Camundongos , Animais , Peróxido de Hidrogênio , Acidente Vascular Cerebral/patologia , Hiperglicemia/patologia , Isquemia Encefálica/patologia
2.
Acta Physiol (Oxf) ; 236(1): e13847, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35653278

RESUMO

AIM: A high-fat diet (HFD) is generally considered to negatively influence the body, the brain, and cognition. Nonetheless, fat and fatty acids are essential for nourishing and constructing brain tissue. Astrocytes are central for lipolysis and fatty acids metabolism. We tested how HFD affects astrocyte metabolism, morphology, and physiology. METHODS: We used Raman microspectroscopy to assess the redox state of mitochondria and lipid content in astrocytes and neurons in hippocampal slices of mice subjected to HFD. Astrocytes were loaded with fluorescent dye through patch pipette for morphological analysis. Whole-cell voltage-clamp recordings were performed to measure transporter and potassium currents. Western blot analysis quantified the expression of astrocyte-specific proteins. Field potential recordings measured the magnitude of long-term potentiation (LTP). Open filed test was performed to evaluate the effect of HFD on animal behavior. RESULTS: We found that exposure of young mice to 1 month of HFD increases lipid content and relative amount of reduced cytochromes in astrocytes but not in neurons. Metabolic changes were paralleled with an enlargement of astrocytic territorial domains due to an increased outgrowth of branches and leaflets. Astrocyte remodeling was associated with an increase in expression of ezrin and with no changes in glial fibrillary acidic protein (GFAP), glutamate transporter-1 (GLT-1), and glutamine synthetase (GS). Such physiological (non-reactive) enlargement of astrocytes in the brain active milieu promoted glutamate clearance and LTP and translated into behavioral changes. CONCLUSION: Dietary fat intake is not invariably harmful and might exert beneficial effects depending on the biological context.


Assuntos
Astrócitos , Dieta Hiperlipídica , Animais , Astrócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Lipídeos , Camundongos , Plasticidade Neuronal
3.
Front Mol Neurosci ; 12: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837840

RESUMO

Convulsive seizures promote adult hippocampal neurogenesis (AHN) through a transient activation of neural stem/progenitor cells (NSPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG). However, in a significant population of epilepsy patients, non-convulsive seizures (ncSZ) are observed. The response of NSPCs to non-convulsive seizure induction has not been characterized before. We here studied first the short-term effects of controlled seizure induction on NSPCs fate and identity. We induced seizures of controlled intensity by intrahippocampally injecting increasing doses of the chemoconvulsant kainic acid (KA) and analyzed their effect on subdural EEG recordings, hippocampal structure, NSPC proliferation and the number and location of immature neurons shortly after seizure onset. After establishing a KA dose that elicits ncSZ, we then analyzed the effects of ncSZ on NSPC proliferation and NSC identity in the hippocampus. ncSZ specifically triggered neuroblast proliferation, but did not induce proliferation of NSPCs in the SGZ, 3 days post seizure onset. However, ncSZ induced significant changes in NSPC composition in the hippocampus, including the generation of reactive NSCs. Interestingly, intrahippocampal injection of a combination of two anti microRNA oligonucleotides targeting microRNA-124 and -137 normalized neuroblast proliferation and prevented NSC loss in the DG upon ncSZ. Our results show for the first time that ncSZ induce significant changes in neuroblast proliferation and NSC composition. Simultaneous antagonism of both microRNA-124 and -137 rescued seizure-induced alterations in NSPC, supporting their coordinated action in the regulation of NSC fate and proliferation and their potential for future seizure therapies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa