Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Stroke ; 55(3): 660-669, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299341

RESUMO

BACKGROUND: Our primary objective was to assess the association between joint exposure to various air pollutants and the risk of ischemic stroke (IS) and the modification of the genetic susceptibility. METHODS: This observational cohort study included 307 304 British participants from the United Kingdom Biobank, who were stroke-free and possessed comprehensive baseline data on genetics, air pollutant exposure, alcohol consumption, and dietary habits. All participants were initially enrolled between 2006 and 2010 and were followed up until 2022. An air pollution score was calculated to assess joint exposure to 5 ambient air pollutants, namely particulate matter with diameters equal to or <2.5 µm, ranging from 2.5 to 10 µm, equal to or <10 µm, as well as nitrogen oxide and nitrogen dioxide. To evaluate individual genetic risk, a polygenic risk score for IS was calculated for each participant. We adjusted for demographic, social, economic, and health covariates. Cox regression models were utilized to estimate the associations between air pollution exposure, polygenic risk score, and the incidence of IS. RESULTS: Over a median follow-up duration of 13.67 years, a total of 2476 initial IS events were detected. The hazard ratios (95% CI) of IS for per 10 µg/m3 increase in particulate matter with diameters equal to or <2.5 µm, ranging from 2.5 to 10 µm, equal to or <10 µm, nitrogen dioxide, and nitrogen oxide were 1.73 (1.33-2.14), 1.24 (0.88-1.70), 1.13 (0.89-1.33), 1.03 (0.98-1.08), and 1.04 (1.02-1.07), respectively. Furthermore, individuals in the highest quintile of the air pollution score exhibited a 29% to 66% higher risk of IS compared with those in the lowest quintile. Notably, participants with both high polygenic risk score and air pollution score had a 131% (95% CI, 85%-189%) greater risk of IS than participants with low polygenic risk score and air pollution score. CONCLUSIONS: Our findings suggested that prolonged joint exposure to air pollutants may contribute to an increased risk of IS, particularly among individuals with elevated genetic susceptibility to IS.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , AVC Isquêmico , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , AVC Isquêmico/induzido quimicamente , Biobanco do Reino Unido , Bancos de Espécimes Biológicos , Material Particulado/efeitos adversos , Material Particulado/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Óxidos de Nitrogênio , Óxido Nítrico , Estratificação de Risco Genético , Exposição Ambiental/efeitos adversos
2.
BMC Plant Biol ; 24(1): 342, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671368

RESUMO

BACKGROUND: The gibberellic acid (GA) inhibitor, uniconazole, is a plant growth regulator commonly used in banana cultivation to promote dwarfing but also enhances the cold resistance in plants. However, the mechanism of this induced cold resistance remains unclear. RESULTS: We confirmed that uniconazole induced cold tolerance in bananas and that the activities of Superoxide dismutase and Peroxidase were increased in the uniconazole-treated bananas under cold stress when compared with the control groups. The transcriptome and metabolome of bananas treated with or without uniconazole were analyzed at different time points under cold stress. Compared to the control group, differentially expressed genes (DEGs) between adjacent time points in each uniconazole-treated group were enriched in plant-pathogen interactions, MAPK signaling pathway, and plant hormone signal transduction, which were closely related to stimulus-functional responses. Furthermore, the differentially abundant metabolites (DAMs) between adjacent time points were enriched in flavone and flavonol biosynthesis and linoleic acid metabolism pathways in the uniconazole-treated group than those in the control group. Temporal analysis of DEGs and DAMs in uniconazole-treated and control groups during cold stress showed that the different expression patterns in the two groups were enriched in the linoleic acid metabolism pathway. In addition to strengthening the antioxidant system and complex hormonal changes caused by GA inhibition, an enhanced linoleic acid metabolism can protect cell membrane stability, which may also be an important part of the cold resistance mechanism of uniconazole treatment in banana plants. CONCLUSIONS: This study provides information for understanding the mechanisms underlying inducible cold resistance in banana, which will benefit the production of this economically important crop.


Assuntos
Regulação da Expressão Gênica de Plantas , Metaboloma , Musa , Transcriptoma , Triazóis , Musa/genética , Musa/efeitos dos fármacos , Musa/fisiologia , Musa/metabolismo , Metaboloma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Triazóis/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/efeitos dos fármacos , Temperatura Baixa , Perfilação da Expressão Gênica , Giberelinas/metabolismo
3.
J Med Virol ; 96(1): e29412, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38258311

RESUMO

Nonpharmaceutical interventions (NPIs) for coronavirus disease 2019 (COVID-19) not only reduce the prevalence of this disease among children but also influence the transmission of other viruses. This retrospective study investigated the impact of NPIs on human enterovirus (HEV) infection in children diagnosed with hand, foot, and mouth disease (HFMD) or herpangina (HA) in Hangzhou, China. We collected and analyzed the laboratory results and clinical data of children diagnosed with HFMD or HA during the following periods: pre-COVID-19 (January 2019 to December 2019), the COVID-19 pandemic (January 2020 to December 2022), and post-COVID-19 (January to December 2023). A total of 41 742 specimens that met the inclusion criteria were obtained, of which 1998 (4.79%) tested positive for enterovirus. In comparison to those in the pre-COVID-19 period, which had 695 (5.63%) HEV-positive specimens, the numbers dramatically decreased to 69 (1.19%), 398 (5.12%), and 112 (1.58%) in 2020, 2021, and 2022, respectively, but significantly increased to 724 (8.27%) in 2023. Seasonal peaks of infections occurred in May, June, July, and August each year, with the total detection rate ranging from 2019 to 2023 being 9.41% in May, 22.47% in June, 28.23% in July, and 12.16% in August, respectively. The difference in the detection rates of HEV infection between males and females was statistically significant (p < 0.005), with 5.11% (1221/23 898) of males and 4.35% (777/17 844) of females testing positive, resulting in a male-to-female positive ratio of 1.57:1. Among the age groups, 11.25% (378/3360) of the children aged 3-5 years had the highest detection rate, which steadily decreased with increasing or decreasing age. The detection of HEV indicated that >95% of the viruses were other types than the previously commonly reported enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16). In conclusion, NPIs for COVID-19 may be effective at reducing the transmission of HEV. However, with the relaxation of NPIs, the detection rate of HEVs increased slowly to a certain extent. Active awareness and surveillance of the epidemiological characteristics of HEV are essential for preventing, controlling, and managing the development of HFMD and HA, as well as contributing to the development of a multivalent HFMD vaccine.


Assuntos
COVID-19 , Infecções por Enterovirus , Enterovirus , Humanos , Feminino , Masculino , Criança , Pandemias , Estudos Retrospectivos , COVID-19/epidemiologia , Infecções por Enterovirus/epidemiologia , Antígenos Virais , China/epidemiologia
4.
Microb Pathog ; 187: 106515, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160987

RESUMO

In this study, a low molecular weight poly-d-mannose (LMWM) was separated from a mixed polysaccharide synthesized previously. Monosaccharide composition, Fourier-Transform infrared spectroscopy (FT-IR), periodate oxidation and smith degradation were determined. After safety evaluation, the inhibition of LMWM on the different biofilm formation stages of Salmonella enterica serovar Typhimurium (S. Typhimurium) was tested in vitro. Furthermore, the effect of LMWM on the adhesion of S. Typhimurium to Caco-2 cells and cell surface hydrophobicity (CSH) were observed. Results indicated that LMWM was a homopolysaccharide without cytotoxicity and hemolysis, containing both α-mannose and ß-mannose. It showed obvious anti-biofilm activity on S. Typhimurium and mainly activated on the initial adhesion and formation stage, even better than the commercial S. cerevisiae mannan (CM). LMWM inhibited the adhesion of S. Typhimurium on Caco-2 cells with the inhibition rate of 61.04 % at 2 mg/ml. Meanwhile, LMWM decreased the hydrophobicity of S. Typhimurium cell surface. In conclusion, the inhibitory effect on S. Typhimurium biofilm was not caused by bacteriostatic or bactericidal activity of LMWM. The specific anti-adhesion and the decrease of bacterial CSH by LMWM may closely relate to anti-biofilm mechanism. This study provides some supports for the application of LMWM as antibiotics alternative on S. Typhimurium in the future.


Assuntos
Manose , Salmonella typhimurium , Humanos , Manose/metabolismo , Manose/farmacologia , Células CACO-2 , Peso Molecular , Saccharomyces cerevisiae , Espectroscopia de Infravermelho com Transformada de Fourier , Biofilmes
5.
BMC Pediatr ; 24(1): 185, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491474

RESUMO

BACKGROUND: The relationship between Vitamin D levels and pediatric celiac disease (CD) remains controversial. In this study, we conducted a systematic review and meta-analysis to examine the relationship between Vitamin D and pediatric CD. METHODS: We screened relevant studies from PubMed, EMBASE, and Web of Science published in English from January 1, 2000, to August 1, 2023. The included studies were assessed according to the STROBE checklist. Heterogeneity was quantified by Cochran's Q test and the I2 statistic. Publication bias was estimated by Begg's test and Egger's test. Meta-regression was used to detect potential sources of heterogeneity. RESULTS: A total of 26 studies were included in the meta-analysis. Nineteen articles compared 25(OH)D3 levels between CD patients and control groups, average 25-hydroxyvitamin D3 [25(OH)D3 or calcidiol], and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3 or calcitriol] levels, as the main forms of Vitamin D, there was a significant difference in CD patients and healthy controls (weighted mean difference (WMD) = - 5.77, 95% confidence interval (CI) = [- 10.86, - 0.69] nmol/L). Meanwhile, eleven articles reported the numbers of patients and controls with Vitamin D deficiency, there was a significant difference in the incidence of 25(OH)D3 deficiency between CD patients and healthy controls (odds ratio 2.20, 95% CI= [1.19, 4.08]). Nine articles reported changes in 25(OH)D3 levels before and after administering a GFD in patients with CD, the result of this study revealed the increase of 25(OH)D3 levels in CD patients after a gluten-free diet (GFD) (WMD = - 6.74, 95% CI = [- 9.78, - 3.70] nmol/L). CONCLUSIONS: Vitamin D levels in pediatric CD patients were lower than in healthy controls, and 25(OH)D3 deficiency was more prevalent in CD patients. We found that 25(OH)D3 levels were elevated in CD patients after GFD, which is consistent with previous research. Further well-designed, longitudinal, prospective cohort studies focusing on the role of Vitamin D in the pathogenesis of CD are therefore needed.

6.
Pharmacol Rev ; 73(2): 847-859, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33712517

RESUMO

The popularity of botanical and other purported medicinal natural products (NPs) continues to grow, especially among patients with chronic illnesses and patients managed on complex prescription drug regimens. With few exceptions, the risk of a given NP to precipitate a clinically significant pharmacokinetic NP-drug interaction (NPDI) remains understudied or unknown. Application of static or dynamic mathematical models to predict and/or simulate NPDIs can provide critical information about the potential clinical significance of these complex interactions. However, methods used to conduct such predictions or simulations are highly variable. Additionally, published reports using mathematical models to interrogate NPDIs are not always sufficiently detailed to ensure reproducibility. Consequently, guidelines are needed to inform the conduct and reporting of these modeling efforts. This recommended approach from the Center of Excellence for Natural Product Drug Interaction Research describes a systematic method for using mathematical models to interpret the interaction risk of NPs as precipitants of potential clinically significant pharmacokinetic NPDIs. A framework for developing and applying pharmacokinetic NPDI models is presented with the aim of promoting accuracy, reproducibility, and generalizability in the literature. SIGNIFICANCE STATEMENT: Many natural products (NPs) contain phytoconstituents that can increase or decrease systemic or tissue exposure to, and potentially the efficacy of, a pharmaceutical drug; however, no regulatory agency guidelines exist to assist in predicting the risk of these complex interactions. This recommended approach from a multi-institutional consortium designated by National Institutes of Health as the Center of Excellence for Natural Product Drug Interaction Research provides a framework for modeling pharmacokinetic NP-drug interactions.


Assuntos
Produtos Biológicos , Preparações Farmacêuticas , Interações Medicamentosas , Humanos , Reprodutibilidade dos Testes
7.
J Pharmacol Exp Ther ; 387(3): 252-264, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37541764

RESUMO

The natural product goldenseal is a clinical inhibitor of CYP3A activity, as evidenced by a 40%-60% increase in midazolam area under the plasma concentration versus time curve (AUC) after coadministration with goldenseal. The predominant goldenseal alkaloids berberine and (-)-ß-hydrastine were previously identified as time-dependent CYP3A inhibitors using human liver microsomes. Whether these alkaloids contribute to the clinical interaction, as well as the primary anatomic site (hepatic vs. intestinal) and mode of CYP3A inhibition (reversible vs. time-dependent), remain uncharacterized. The objective of this study was to mechanistically assess the pharmacokinetic goldenseal-midazolam interaction using an integrated in vitro-in vivo-in silico approach. Using human intestinal microsomes, (-)-ß-hydrastine was a more potent time-dependent inhibitor of midazolam 1'-hydroxylation than berberine (KI and kinact: 8.48 µM and 0.041 minutes-1, respectively, vs. >250 µM and ∼0.06 minutes-1, respectively). Both the AUC and Cmax of midazolam increased by 40%-60% after acute (single 3-g dose) and chronic (1 g thrice daily × 6 days) goldenseal administration to healthy adults. These increases, coupled with a modest or no increase (≤23%) in half-life, suggested that goldenseal primarily inhibited intestinal CYP3A. A physiologically based pharmacokinetic interaction model incorporating berberine and (-)-ß-hydrastine successfully predicted the goldenseal-midazolam interaction to within 20% of that observed after both chronic and acute goldenseal administration. Simulations implicated (-)-ß-hydrastine as the major alkaloid precipitating the interaction, primarily via time-dependent inhibition of intestinal CYP3A, after chronic and acute goldenseal exposure. Results highlight the potential interplay between time-dependent and reversible inhibition of intestinal CYP3A as the mechanism underlying natural product-drug interactions, even after acute exposure to the precipitant. SIGNIFICANCE STATEMENT: Natural products can alter the pharmacokinetics of an object drug, potentially resulting in increased off-target effects or decreased efficacy of the drug. The objective of this work was to evaluate fundamental mechanisms underlying the clinically observed goldenseal-midazolam interaction. Results support the use of an integrated approach involving established in vitro assays, clinical evaluation, and physiologically based pharmacokinetic modeling to elucidate the complex interplay between multiple phytoconstituents and various pharmacokinetic processes driving a drug interaction.


Assuntos
Alcaloides , Berberina , Produtos Biológicos , Hydrastis , Adulto , Humanos , Midazolam/farmacocinética , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas , Modelos Biológicos
8.
Drug Metab Dispos ; 51(12): 1591-1606, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751998

RESUMO

Underestimation of aldehyde oxidase (AO)-mediated clearance by current in vitro assays leads to uncertainty in human dose projections, thereby reducing the likelihood of success in drug development. In the present study we first evaluated the current drug development practices for AO substrates. Next, the overall predictive performance of in vitro-in vivo extrapolation of unbound hepatic intrinsic clearance (CLint,u) and unbound hepatic intrinsic clearance by AO (CLint,u,AO) was assessed using a comprehensive literature database of in vitro (human cytosol/S9/hepatocytes) and in vivo (intravenous/oral) data collated for 22 AO substrates (total of 100 datapoints from multiple studies). Correction for unbound fraction in the incubation was done by experimental data or in silico predictions. The fraction metabolized by AO (fmAO) determined via in vitro/in vivo approaches was found to be highly variable. The geometric mean fold errors (gmfe) for scaled CLint,u (mL/min/kg) were 10.4 for human hepatocytes, 5.6 for human liver cytosols, and 5.0 for human liver S9, respectively. Application of these gmfe's as empirical scaling factors improved predictions (45%-57% within twofold of observed) compared with no correction (11%-27% within twofold), with the scaling factors qualified by leave-one-out cross-validation. A road map for quantitative translation was then proposed following a critical evaluation on the in vitro and clinical methodology to estimate in vivo fmAO In conclusion, the study provides the most robust system-specific empirical scaling factors to date as a pragmatic approach for the prediction of in vivo CLint,u,AO in the early stages of drug development. SIGNIFICANCE STATEMENT: Confidence remains low when predicting in vivo clearance of AO substrates using in vitro systems, leading to de-prioritization of AO substrates from the drug development pipeline to mitigate risk of unexpected and costly in vivo impact. The current study establishes a set of empirical scaling factors as a pragmatic tool to improve predictability of in vivo AO clearance. Developing clinical pharmacology strategies for AO substrates by utilizing mass balance/clinical drug-drug interaction data will help build confidence in fmAO.


Assuntos
Aldeído Oxidase , Fígado , Humanos , Aldeído Oxidase/metabolismo , Taxa de Depuração Metabólica , Fígado/metabolismo , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo
9.
Lupus ; 32(10): 1211-1221, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37480550

RESUMO

OBJECTIVE: Children with lupus anticoagulant hypoprothrombinemia syndrome (LAHPS) are characterized by prolonged activated partial thromboplastin time (APTT) and prothrombin time (PT), lupus anticoagulant positivity and low prothrombin (factor II, FII) levels. Bleeding or thrombosis tendencies related to LAHPS in children can occur due to the development of anti-prothrombin antibodies that are usually linked to autoimmune or infectious diseases. METHODS: We report three pediatric cases of LAHPS and describe details on their clinical symptoms, laboratory characteristics, treatment. PubMed, Medline, and Web of Science searches were conducted on LAHPS in children between 1960 and 2023; articles in English were included. RESULTS: The coagulation profile revealed prolonged PT and APTT, with low prothrombin levels (19.4%, 21.0% and 12.9%, respectively) and positive lupus anticoagulant in 3 pediatric cases. Fifty-nine relevant articles reported 93 pediatric LAHPS cases (mean age: 9 years (0.8-17 years)); 63 females and 30 males, 87 patients presented with minor to severe bleeding diathesis, and 3 patients presented with thrombosis events. Among 48 patients ≥9 years old, 36 had SLE; among 45 patients <9 years, 29 had viral infection. When all patients were divided into two groups based on age, associated disease, and factor II level, Pearson's χ2 tests were performed, p =.00, and there was clinical significance between autoimmune and infectious disease in patients ≥9 years old and <9 years old, and in patients FII level ≤10% and >10%. LAHPS patients with autoimmune disease had a protracted course and needed prolonged treatment with immune-modulating therapy, while those patients with infectious disease resolved spontaneously or needed short-term immune-modulating therapy. CONCLUSION: LAHPS caused by autoimmune disease are common in patients ≥9 years old, especially SLE, and FII level ≤10% is often reported in patients caused by autoimmune disease, suggesting that children ≥9 years old diagnosed with LAHPS-related autoimmune disease should pay special attention to the FII level. While LAHPS caused by infectious disease is more frequently observed in patients <9 years, especially viral infection. Early diagnostic investigations are critical to differentiating LAHPS caused by autoimmune or infectious disease, as the prognosis, treatment and outcome are distinct.


Assuntos
Síndrome Antifosfolipídica , Doenças Autoimunes , Hipoprotrombinemias , Lúpus Eritematoso Sistêmico , Feminino , Masculino , Humanos , Criança , Pré-Escolar , Hipoprotrombinemias/diagnóstico , Inibidor de Coagulação do Lúpus , Protrombina , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/diagnóstico , Doenças Autoimunes/diagnóstico
10.
Fish Shellfish Immunol ; 134: 108608, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36764632

RESUMO

Although accumulating data demonstrated that gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, plays an important regulatory role in immunity of vertebrates, its immunomodulatory function and mechanisms of action remain poorly understood in invertebrates such as bivalve mollusks. In this study, the effect of GABA on phagocytic activity of hemocytes was evaluated in a commercial bivalve species, Tegillarca granosa. Furthermore, the potential regulatory mechanism underpinning was investigated by assessing potential downstream targets. Data obtained demonstrated that in vitro GABA incubation significantly constrained the phagocytic activity of hemocytes. In addition, the GABA-induced suppression of phagocytosis was markedly relieved by blocking of GABAA and GABAB receptors using corresponding antagonists. Hemocytes incubated with lipopolysaccharides (LPS) and GABA had significant higher K+-Cl- cotransporter 2 (KCC2) content compared to the control. In addition, GABA treatment led to an elevation in intracellular Cl-, which was shown to be leveled down to normal by blocking the ionotropic GABAA receptor. Treatment with GABAA receptor antagonist also rescued the suppression of GABAA receptor-associated protein (GABARAP), KCC, TNF receptor associated factor 6 (TRAF6), inhibitor of nuclear factor kappa-B kinase subunit alpha (IKKα), and nuclear factor kappa B subunit 1 (NFκB) caused by GABA incubation. Furthermore, incubation of hemocytes with GABA resulted in a decrease in cAMP content, an increase in intracellular Ca2+, and downregulation of cAMP-dependent protein kinase (PKA), calmodulin kinase II (CAMK2), calmodulin (CaM), calcineurin (CaN), TRAF6, IKKα, and NFκB. All these above-mentioned changes were found to be evidently relieved by blocking the metabotropic G-protein-coupled GABAB receptor. Our results suggest GABA may play an inhibitory role on phagocytosis through binding to both GABAA and GABAB receptors, and subsequently regulating corresponding downstream pathways in bivalve invertebrates.


Assuntos
Receptores de GABA-A , Receptores de GABA , Animais , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Quinase I-kappa B/metabolismo , Hemócitos/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Ácido gama-Aminobutírico/farmacologia , Fagocitose
11.
Environ Sci Technol ; 57(24): 9043-9054, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37276532

RESUMO

The ubiquitous environmental presence of tris(2-chloroethyl) phosphate (TCEP) poses a potential threat to animals; however, little is known about its hepatotoxicity. In this study, the effects of TCEP exposure (0.5 and 5.0 µg/L for 28 days) on liver health and the potential underlying toxification mechanisms were investigated in zebrafish. Our results demonstrated that TCEP exposure led to hepatic tissue lesions and resulted in significant alterations in liver-injury-specific markers. Moreover, TCEP-exposed fish had significantly lower levels of thyrotropin-releasing hormone and thyroid-stimulating hormone in the brain, evidently less triiodothyronine whereas more thyroxine in plasma, and markedly altered expressions of genes from the hypothalamic-pituitary-thyroid (HPT) axis in the brain or liver. In addition, a significantly higher proportion of Bacteroidetes in the gut microbiota, an elevated bacterial source endotoxin lipopolysaccharide (LPS) in the plasma, upregulated expression of LPS-binding protein and Toll-like receptor 4 in the liver, and higher levels of proinflammatory cytokines in the liver were detected in TCEP-exposed zebrafish. Furthermore, TCEP-exposed fish also suffered severe oxidative damage, possibly due to disruption of the antioxidant system. These findings suggest that TCEP may exert hepatotoxic effects on zebrafish by disrupting the HPT and gut-liver axes and thereafter inducing hepatic inflammation and oxidative stress.


Assuntos
Glândula Tireoide , Poluentes Químicos da Água , Animais , Glândula Tireoide/química , Glândula Tireoide/metabolismo , Peixe-Zebra , Fígado , Fosfatos , Poluentes Químicos da Água/análise
12.
Epilepsy Behav ; 143: 109243, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182501

RESUMO

PURPOSE: This study evaluated medical students' knowledge and attitudes toward epilepsy and the influence of metacognition thereon. METHOD: Valid questionnaires were administered to medical students including undergraduate, professional postgraduate, and standardized residency training students (N = 503). The questionnaire had 4 parts: demographic information, knowledge of epilepsy, attitudes toward epilepsy, and metacognitive assessment. The Chinese Public Attitudes Toward Epilepsy scale and 30-Item Metacognition Questionnaire were used to assess attitudes and metacognition, respectively. RESULTS: Almost all participants had heard of epilepsy; 38.8% had witnessed a seizure and 25% were acquainted with a person with epilepsy. The proportion of correct answers to epilepsy-related knowledge ranged from 40.6% (Putting an object into the mouth of a person experiencing an epileptic seizure) to 97% (Convulsion is a symptom of epilepsy). However, knowledge of epilepsy was not able to affect attitudes toward epilepsy. Age, years of clinical experience, having witnessed a seizure, positive belief of worry, and need to control thinking were correlated with the different domains of attitude toward epilepsy. When participants were divided into 2 groups-i.e., those with high and low knowledge of epilepsy, participants in the former group who had a positive belief of worry or had not witnessed any seizures were more likely to have negative attitudes toward epilepsy. CONCLUSION: Medical students showed good awareness of the etiology and symptoms of epilepsy. Overall, attitudes toward epilepsy were negative. A positive belief of worry was associated with a more negative attitude toward epilepsy among respondents with greater knowledge of epilepsy.


Assuntos
Epilepsia , Metacognição , Estudantes de Medicina , Humanos , Conhecimentos, Atitudes e Prática em Saúde , Epilepsia/complicações , Epilepsia/psicologia , Convulsões , Inquéritos e Questionários
13.
BMC Plant Biol ; 22(1): 614, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575388

RESUMO

BACKGROUND: Uniconazole is an effective plant growth regulator that can be used in banana cultivation to promote dwarfing and enhance lodging resistance. However, the mechanisms underlying banana dwarfing induced by uniconazole are unknown. In uniconazole-treated bananas, gibberellin (GA) was downregulated compared to the control groups. An integrative analysis of transcriptomes and metabolomes was performed on dwarf bananas induced by uniconazole and control groups. The key pathways involved in uniconazole-induced dwarfism in banana were determined according to the overlap of KEGG annotation of differentially expressed genes and (DEGs) differential abundant metabolites (DAMs). RESULTS: Compared with the control groups, the levels of some flavonoids, tannins, and alkaloids increased, and those of most lipids, amino acids and derivatives, organic acids, nucleotides and derivatives, and terpenoids decreased in uniconazole-treated bananas. Metabolome analysis revealed the significant changes of flavonoids in uniconazole-treated bananas compared to control samples at both 15 days and 25 days post treatment. Transcriptome analysis shows that the DEGs between the treatment and control groups were related to a series of metabolic pathways, including lignin biosynthesis, phenylpropanoid metabolism, and peroxidase activity. Comprehensive analysis of the key pathways of co-enrichment of DEGs and DAMs from 15 d to 25 d after uniconazole treatment shows that flavonoid biosynthesis was upregulated. CONCLUSIONS: In addition to the decrease in GA, the increase in tannin procyanidin B1 may contribute to dwarfing of banana plants by inhibiting the activity of GA. The increased of flavonoid biosynthesis and the change of lignin biosynthesis may lead to dwarfing phenotype of banana plants. This study expands our understanding of the mechanisms underlying uniconazole-induced banana dwarfing.


Assuntos
Nanismo , Musa , Transcriptoma , Musa/genética , Musa/metabolismo , Lignina/metabolismo , Perfilação da Expressão Gênica , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas
14.
BMC Med ; 20(1): 194, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35606791

RESUMO

BACKGROUND: Stroke is one of the major challenges for the global healthcare system, which makes it necessary to explore the relationship between various modifiable factors and stroke risk. Recently, numerous meta-analyses of prospective observational studies have reported that dietary factors played a key role in the occurrence of stroke. However, the conclusions of previous studies have remained controversial and unclear. Accordingly, we conducted an umbrella review synthesizing and recalculating available evidence to assess the certainty of the associations between dietary factors and stroke. METHODS: Relevant meta-analyses examining the associations between dietary factors and stroke were searched in PubMed and Embase databases up to September 1, 2021. For each eligible meta-analysis, two independent reviewers appraised the methodologic quality using the AMSTAR 2 criteria and estimated the summary effect size, 95% confidence intervals, 95% prediction intervals, heterogeneity between studies, and small-study effects. Moreover, we further assessed the associations between dietary factors and ischemic stroke as well as hemorrhagic stroke. Lastly, a set of pre-specified criteria was applied to qualitatively evaluate the epidemiological credibility of each dietary factor. RESULTS: Overall, our umbrella review included 122 qualified meta-analyses for qualitative synthesis, involving 71 dietary factors related to food groups, foods, macronutrients, and micronutrients. Using the AMSTAR 2 criteria, 5 studies were assessed as high quality, 4 studies as moderate quality, and 113 studies as low or critically low quality. We identified 34 dietary factors associated with stroke occurrence, 25 dietary factors related to ischemic stroke, and 11 factors related to hemorrhagic stroke. Among them, high/moderate certainty epidemiological evidence demonstrated an inverse association between intake of fruits (RR: 0.90) and vegetables (RR: 0.92) and stroke incidence, but a detrimental association between red meat (RR: 1.12), especially processed red meat consumption (RR:1.17), and stroke incidence. Besides, the evidence of high/moderate certainty suggested that the intake of processed meat, fruits, coffee, tea, magnesium, and dietary fiber was associated with ischemic stroke risk, while consumption of tea, fruits, and vegetables was relevant to hemorrhagic stroke susceptibility. CONCLUSIONS: Our study has reported that several dietary factors have a significant impact on stroke risk and offered a new insight into the relationship between dietary modification and stroke occurrence. Our results may provide an effective strategy for stroke prevention.


Assuntos
Dieta , Acidente Vascular Cerebral , Dieta/efeitos adversos , Humanos , Incidência , Metanálise como Assunto , Estudos Observacionais como Assunto , Estudos Prospectivos , Acidente Vascular Cerebral/epidemiologia
15.
J Med Virol ; 94(3): 847-857, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34609003

RESUMO

During the COVID-19 pandemic, genetic variants of SARS-CoV-2 have been emerging and spreading around the world. Several SARS-CoV-2 endemic variants were found in United Kingdom, South Africa, Japan, and India between 2020 and April 2021. Studies have shown that many SARS-CoV-2 variants are more infectious than early wild strain and produce immune escape. These SARS-CoV-2 variants have brought new challenges to the prevention and control of COVID-19. This review summarizes and analyzes the biological characteristics of different amino acid mutations and the epidemic characteristics and immune escape of different SARS-CoV-2 variants. We hope to provide scientific reference for the monitoring, prevention, and control measures of new SARS-CoV-2 variants and the development strategy of the second-generation vaccine.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Vacinas contra COVID-19 , Humanos , Mutação , Pandemias , SARS-CoV-2/genética
16.
J Med Virol ; 94(6): 2376-2383, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35118687

RESUMO

Recently, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) was first identified in Botswana in November 2021. It was first reported to the World Health Organization (WHO) on November 24. On November 26, 2021, according to the advice of scientists who are part of the WHO's Technical Advisory Group on SARS-CoV-2 Virus Evolution (TAG-VE), the WHO defined the strain as a variant of concern (VOC) and named it Omicron. Compared to the other four VOCs (Alpha, Beta, Gamma, and Delta), the Omicron variant was the most highly mutated strain, with 50 mutations accumulated throughout the genome. The Omicron variant contains at least 32 mutations in the spike protein, which was twice as many as the Delta variant. Studies have shown that carrying many mutations can increase infectivity and immune escape of the Omicron variant compared with the early wild-type strain and the other four VOCs. The Omicron variant is becoming the dominant strain in many countries worldwide and brings new challenges to preventing and controlling coronavirus disease 2019 (COVID-19). The current review article aims to analyze and summarize information data about the biological characteristics of amino acid mutations, the epidemic characteristics, immune escape, and vaccine reactivity of the Omicron variant, hoping to provide a scientific reference for monitoring, prevention, and vaccine development strategies for the Omicron variant.


Assuntos
COVID-19 , Epidemias , COVID-19/epidemiologia , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
17.
Microb Pathog ; 173(Pt A): 105863, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36332791

RESUMO

The natural compound, exopolysaccharide from Lactobacillus casei NA-2 (EPS-cn2), has been shown to inhibit biofilm formation by Escherichia coli O157:H7. Although bacterial adhesion to substrate surfaces is a primary, indispensable step in this process, the mechanisms by which EPS-cn2 can block E. coli O157:H7 adhesion to biotic or abiotic surfaces remain unclear. In this study, investigation of E. coli O157:H7 response to EPS-cn2 revealed that 1 mg/mL EPS-cn2 can decrease adherence to polystyrene and confluent Caco-2 cell surfaces to 49.0% (P<0.0001) and 57.0% (P<0.01) of that in untreated E. coli O157:H7, respectively. Moreover, EPS-cn2 significantly reduced outer membrane hydrophobicity by 49.0% and decreased the electronegativity of the membrane surface charge by as much as 1.57 mV (P<0.05) compared to untreated cells. High throughput RNA sequencing indicated that genes responsible for adhesion through extracellular matrix secretion, such as poly-N-acetyl-glucosamine (PNAG) biosynthesis, locus of enterocyte effacement (LEE) proteins and outer membrane protein (OmpT) were all down-regulated in response to EPS-cn2, while chemotaxis and motility-related flagellar assembly genes were differentially up-regulated, suggesting that the EPS-cn2 may serve as an extracellular signal to attenuate adhesion-related gene expression and alter bacterial surface properties in E. coli O157:H7. These findings support the further development of EPS-cn2 for pathogenic biofilm management in clinical and industrial settings, and suggests the further targeting of adhesion-related genes to limit the persistence of this highly pathogenic strain in sensitive environments.


Assuntos
Escherichia coli O157 , Proteínas de Escherichia coli , Lacticaseibacillus casei , Aderência Bacteriana/fisiologia , Células CACO-2 , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Expressão Gênica , Lacticaseibacillus casei/genética , Propriedades de Superfície
18.
J Pharmacol Exp Ther ; 376(1): 64-73, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33093187

RESUMO

Preparations from the leaves of the kratom plant (Mitragyna speciosa) are consumed for their opioid-like effects. Several deaths have been associated with kratom used concomitantly with some drugs. Pharmacokinetic interactions are potential underlying mechanisms of these fatalities. Accumulating in vitro evidence has demonstrated select kratom alkaloids, including the abundant indole alkaloid mitragynine, as reversible inhibitors of several cytochromes P450 (CYPs). The objective of this work was to refine the mechanistic understanding of potential kratom-drug interactions by considering both reversible and time-dependent inhibition (TDI) of CYPs in the liver and intestine. Mitragynine was tested against CYP2C9 (diclofenac 4'-hydroxylation), CYP2D6 (dextromethorphan O-demethylation), and CYP3A (midazolam 1'-hydroxylation) activities in human liver microsomes (HLMs) and CYP3A activity in human intestinal microsomes (HIMs). Comparing the absence to presence of NADPH during preincubation of mitragynine with HLMs or HIMs, an ∼7-fold leftward shift in IC50 (∼20 to 3 µM) toward CYP3A resulted, prompting determination of TDI parameters (HLMs: K I , 4.1 ± 0.9 µM; k inact , 0.068 ± 0.01 min-1; HIMs: K I , 4.2 ± 2.5 µM; k inact , 0.079 ± 0.02 min-1). Mitragynine caused no leftward shift in IC50 toward CYP2C9 (∼40 µM) and CYP2D6 (∼1 µM) but was a strong competitive inhibitor of CYP2D6 (K i , 1.17 ± 0.07 µM). Using a recommended mechanistic static model, mitragynine (2-g kratom dose) was predicted to increase dextromethorphan and midazolam area under the plasma concentration-time curve by 1.06- and 5.69-fold, respectively. The predicted midazolam area under the plasma concentration-time curve ratio exceeded the recommended cutoff (1.25), which would have been missed if TDI was not considered. SIGNIFICANCE STATEMENT: Kratom, a botanical natural product increasingly consumed for its opioid-like effects, may precipitate potentially serious pharmacokinetic interactions with drugs. The abundant kratom indole alkaloid mitragynine was shown to be a time-dependent inhibitor of hepatic and intestinal cytochrome P450 3A activity. A mechanistic static model predicted mitragynine to increase systemic exposure to the probe drug substrate midazolam by 5.7-fold, necessitating further evaluation via dynamic models and clinical assessment to advance the understanding of consumer safety associated with kratom use.


Assuntos
Dextrometorfano/farmacocinética , Midazolam/farmacocinética , Alcaloides de Triptamina e Secologanina/farmacocinética , Família 2 do Citocromo P450/antagonistas & inibidores , Interações Medicamentosas , Humanos , Mucosa Intestinal/metabolismo , Microssomos Hepáticos/metabolismo
19.
Biol Res ; 54(1): 19, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238380

RESUMO

In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.


Assuntos
Silício , Estresse Fisiológico , Agricultura , Plantas , Solo
20.
Metab Brain Dis ; 36(2): 273-283, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33180213

RESUMO

The enhanced release of inflammatory cytokines mediated by high mobility group box1 (HMGB1) leads to pain sensation, and has been implicated in the etiology of inflammatory pain. Paeonol (PAE), a major active phenolic component in Cortex Moutan, provides neuroprotective efficacy via exerting anti-inflammatory effect. However, the role and mechanism of PAE in inflammatory pain remain to be fully clarified. In this study, we showed that PAE treatment significantly ameliorated mechanical and thermal hyperalgesia of mice induced by complete Freund's adjuvant (CFA). The analgesic effect of PAE administration was associated with suppressing the enhanced expression of HMGB1 as well as the downstream signaling molecules including toll-like receptor 4 (TLR4), the nuclear NF-κB p65, TNF-α and IL-1ß after CFA insult in the anterior cingulate cortex (ACC), a key brain region responsible for pain processing. Furthermore, inhibition of HMGB1 activity by glycyrrhizin (GLY), an HMGB1 inhibitor, alleviated CFA-induced pain and also facilitated PAE-mediated analgesic effect in mice along with the decreased expression of TLR4, NF-κB p65, TNF-α and IL-1ß upon CFA injury. Collectively, we showed PAE exerted analgesic effect through inhibiting the HMGB1/TLR4/NF-κB p65 pathway and subsequent generation of cytokines TNF-α and IL-1ß in the ACC.


Assuntos
Acetofenonas/farmacologia , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Acetofenonas/uso terapêutico , Animais , Proteína HMGB1/metabolismo , Hiperalgesia/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa