Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(7): e202312879, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37905977

RESUMO

In recent years, heterocyclic organic compounds have been explored as molecular electrocatalysts in relevant reactions for energy conversion and storage. Merging mimetics of biological systems that perform hydride transfer with rational synthetic chemical design has opened many opportunities for organic molecules to be tuned at the atomic level conferring them interesting reactivities. These molecular electrocatalysts represent an alternative to traditional metallic materials and metal complexes employed for water oxidation, hydrogen production, and carbon dioxide reduction. This minireview describes recent reports concerning design, catalytic activity and the mechanism of synthetic molecular electrocatalysts towards solar fuels production.

2.
J Am Chem Soc ; 145(34): 18687-18692, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37582183

RESUMO

Developing light-harvesting systems with efficient photoinduced charge separation and long-lived charge-separated (CS) state is desirable but still challenging. In this study, we designed a zinc porphyrin photosensitizer covalently linked with viologen (ZnP-V) that can be prepared into nanoparticles in aqueous solution. In DMF solution, the monomeric ZnP-V dyads show no electron transfer between the ZnP and viologen units. In contrast, the ZnP-V nanoparticles in aqueous solution show fast charge separation with a CS state lifetime of up to 4.3 ms. This can be attributed to charge hopping induced by aggregation or distance modification between the donor and acceptor induced by electronic interaction. Nevertheless, the lifetime of the CS state is orders of magnitude longer than for molecular aggregates reported previously. The ZnP-V nanoparticles show enhanced photocatalytic hydrogen production as compared to the ZnP nanoparticles and still hold promise for other applications such as photovoltaic devices and photoredox catalysis.

3.
J Am Chem Soc ; 145(21): 11472-11476, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37127024

RESUMO

Lateral intermolecular charge transfer between photosensitizers on metal oxide substrates is important for the understanding on the overall working principles of dye-sensitized systems. Such studies usually concentrate on either hole or electron transfer separately and are conducted in solvents with a high dielectric constant (εs) that are known, however, to show a drastic decrease of the local dielectric constant close to the metal oxide surface. In the present study, both hole and electron hopping between organic donor-acceptor photosensitizers was experimentally investigated on PB6 dye-sensitized mesoporous ZrO2 films. The donor (close to the surface) and acceptor (away from surface) subunit of the PB6 dye were observed to be involved in hole and electron hopping, respectively. Hole and electron transfer kinetics were found to differ remarkably in high-εs solvents, but similar in solvents with εs < 12. This finding indicates that low-εs solvents maintain similar local dielectric constant values close to, and further away from, the semiconductor surface, which is different from the previously observed behavior of high dielectric constant solvents at a metal oxide interface.

4.
J Am Chem Soc ; 145(20): 11067-11073, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37191461

RESUMO

Control of charge separation and recombination is critical for dye-sensitized solar cells and photoelectrochemical cells, and for p-type cells, the latter process limits their photovoltaic performance. We speculated that the lateral electron hopping between dyes on a p-type semiconductor surface can effectively separate electrons and holes in space and retard recombination. Thus, device designs where lateral electron hopping is promoted can lead to enhanced cell performance. Herein, we present an indirect proof by involving a second dye to monitor the effect of electron hopping after hole injection into the semiconductor. In mesoporous NiO films sensitized with peryleneimide (PMI) or naphthalene diimide (NDI) dyes, dye excitation led to ultrafast hole injection into NiO from either excited PMI* (τ < 200 fs) or NDI* (τ = 1.2 ps). In cosensitized films, surface electron transfer from PMI- to NDI was rapid (τ = 24 ps). Interestingly, the subsequent charge recombination (ps-µs) with NiO holes was much slower when NDI- was generated by electron transfer from PMI- than when NDI was excited directly. We therefore indicate that the charge recombination is slowed down after the charge hopping from the original PMI sites to the NDI sites. The experimental results supported our hypothesis and revealed important information on the charge carrier kinetics for the dye-sensitized NiO photoelectrode system.

5.
Phys Chem Chem Phys ; 25(4): 2935-2945, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36606387

RESUMO

Aqueous dispersed conjugated polymer dots (Pdots) have shown promising application in photocatalytic hydrogen evolution. To efficiently extract photogenerated charges from type-II heterojunction Pdots for hydrogen evolution, the mechanistic study of photophysical processes is essential for Pdot optimization. Within this work, we use a PFODTBT donor (D) polymer and an ITIC small molecule acceptor (A) as a donor/acceptor (D/A) model system to study their excited states and charge/energy transfer dynamics via steady-state and time-resolved photoluminescence spectroscopy, respectively. Charge-carrier generation and the recombination dynamics of binary Pdots with different D/A ratios were followed using femtosecond transient absorption spectroscopy. A significant spectral relaxation of photoluminescence was observed for individual D Pdots, implying an energetic disorder by nature. However, this was not seen for charge carriers in binary Pdots, probably due to the ultrafast charge generation process at an early time (<200 fs). The results showed slower charge recombination upon increasing the ratio of ITIC in binary Pdots, which further resulted in an enhanced photocatalytic hydrogen evolution, twice that as compared to individual D Pdots. Although binary Pdots prepared via the nanoprecipitation method exhibit a large interfacial area that allows high charge generation efficiencies, it also provides a high possibility for charge recombination and limits the further utilization of free charges. Therefore, for the future design of type-II heterojunction Pdots, suppressing the charge carrier recombination via increasing the crystallinity and proper phase segregation is necessary for enhanced photocatalytic hydrogen evolution.

6.
Chem Soc Rev ; 51(16): 6909-6935, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35912574

RESUMO

Production of renewable fuels from solar energy and abundant resourses, such as water and carbon dioxide, via photocatalytic reactions is seen as a promising strategy to adequately address the climate challenge. Photocatalytic systems based on organic polymer nanoparticles (PNPs) are seen as one avenue to transform solar energy into hydrogen and other solar fuels. Semiconducting PNPs are light-harvesting materials with exceptional optical properties, photostability, low cost and low cytotoxity, whose performance surpasses conventional organic dyes and inorganic semiconductors. This review introduces the optimization strategies for the preparation methods of PNP via cocatalyst loading and morphology tuning. We present an analysis on how the preparative methods will impact the physico-chemical properties of these materials, and thus the catalytic activity. A list of experimental techniques is presented for characterization of the physico-chemical properties (optical, morphological, electrochemical and catalytic properties) of PNPs. We provide detailed analysis of PNP photochemistry during photocatalysis with focus on the mechanistic understanding of processes of internal charge generation and transport to the catalyst. This tutorial review provides the reader with the guidelines on current strategies used to optimize PNP performance highlighting the future directions of polymer nano-photocatalysts development.

7.
Aquac Nutr ; 2023: 4733343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288329

RESUMO

The research is aimed at investigating the effects of dietary protein and lipid levels on adult triploid rainbow trout growth performance, feed utilization, digestive and metabolic enzyme activities, antioxidative capacity, and fillet quality. Nine diets containing three dietary protein levels (DP) (300, 350, and 400 g kg-1) and three dietary lipid levels (DL) (200, 250, and 300 g kg-1) were prepared using a 3 × 3 factorial design. In freshwater cages, 13,500 adult female triploid rainbow trout (3.2 ± 0.1 kg) were cultured for 77 days. Triplicate cages (500 fish per cage) were used as repetitions of each experimental diet. The findings revealed that as DP increased to 400 g kg-1 and DL raised to 300 g kg-1, the weight gain ratio (WGR) elevated significantly (P < 0.05). However, when DP ≥ 350 g kg-1, WGR was similar in the DL250 and DL300 groups. As DP raised to 350 g kg-1, the feed conversion ratio (FCR) notably decreased (P < 0.05). In the DP350DL300 group, lipids had a protein-sparing impact. High DP diet (400 g kg-1) generally improved fish health status by increasing antioxidant capacity in the liver and intestine. A high DL diet (300 g kg-1) showed no harmful effect on hepatic health based on plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and antioxidant capacity in the liver. For fillet quality, a high DP diet could increase fillet yield, improve fillet hardness, springiness, and water-holding capacity values, and inhibit the production of off-flavors caused by n-6 fatty acids. A high DL diet could increase odor intensity, and EPA, DHA, and n-3 fatty acid concentrations decrease the thrombogenicity index value. The maximum fillet redness value was discovered in the DP400DL300 group. Overall, for adult triploid rainbow trout (≥3 kg), the minimum recommended DP and DL according to growth performance were 400 and 250 g kg-1, respectively; DP and DL based on feed utilization were 350 and 200 g kg-1, respectively; DP and DL based on fillet quality were 400 and 300 g kg-1, respectively.

8.
Angew Chem Int Ed Engl ; 62(45): e202312276, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37728510

RESUMO

Developing low-cost and efficient photocatalysts to convert CO2 into valuable fuels is desirable to realize a carbon-neutral society. In this work, we report that polymer dots (Pdots) of poly[(9,9'-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-thiadiazole)] (PFBT), without adding any extra co-catalyst, can photocatalyze reduction of CO2 into CO in aqueous solution, rendering a CO production rate of 57 µmol g-1 h-1 with a detectable selectivity of up to 100 %. After 5 cycles of CO2 re-purging experiments, no distinct decline in CO amount and reaction rate was observed, indicating the promising photocatalytic stability of PFBT Pdots in the photocatalytic CO2 reduction reaction. A mechanistic study reveals that photoexcited PFBT Pdots are reduced by sacrificial donor first, then the reduced PFBT Pdots can bind CO2 and reduce it into CO via their intrinsic active sites. This work highlights the application of organic Pdots for CO2 reduction in aqueous solution, which therefore provides a strategy to develop highly efficient and environmentally friendly nanoparticulate photocatalysts for CO2 reduction.

9.
J Am Chem Soc ; 144(30): 13600-13611, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35863067

RESUMO

A semiartificial photosynthesis approach that utilizes enzymes for solar fuel production relies on efficient photosensitizers that should match the enzyme activity and enable long-term stability. Polymer dots (Pdots) are biocompatible photosensitizers that are stable at pH 7 and have a readily modifiable surface morphology. Therefore, Pdots can be considered potential photosensitizers to drive such enzyme-based systems for solar fuel formation. This work introduces and unveils in detail the interaction within the biohybrid assembly composed of binary Pdots and the HydA1 [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The direct attachment of hydrogenase on the surface of toroid-shaped Pdots was confirmed by agarose gel electrophoresis, cryogenic transmission electron microscopy (Cryo-TEM), and cryogenic electron tomography (Cryo-ET). Ultrafast transient spectroscopic techniques were used to characterize photoinduced excitation and dissociation into charges within Pdots. The study reveals that implementation of a donor-acceptor architecture for heterojunction Pdots leads to efficient subpicosecond charge separation and thus enhances hydrogen evolution (88 460 µmolH2·gH2ase-1·h-1). Adsorption of [FeFe]-hydrogenase onto Pdots resulted in a stable biohybrid assembly, where hydrogen production persisted for days, reaching a TON of 37 500 ± 1290 in the presence of a redox mediator. This work represents an example of a homogeneous biohybrid system combining polymer nanoparticles and an enzyme. Detailed spectroscopic studies provide a mechanistic understanding of light harvesting, charge separation, and transport studied, which is essential for building semiartificial photosynthetic systems with efficiencies beyond natural and artificial systems.


Assuntos
Chlamydomonas reinhardtii , Hidrogenase , Proteínas Ferro-Enxofre , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Fármacos Fotossensibilizantes , Polímeros
10.
Phys Chem Chem Phys ; 24(31): 18888-18895, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35913077

RESUMO

Electrochemical impedance spectroscopy (EIS) is a commonly used steady-state technique to examine the internal resistance of electron-transfer processes in solar cell devices, and the results are directly related to the photovoltaic performance. In this study, EIS was performed to study the effects of accelerated ageing, aiming for insights into the degradation mechanisms of dye-sensitized solar cells (DSSCs) containing cobalt tris(bipyridine) complexes as redox mediators. Control experiments based on aged electrolytes differing in concentrations of the redox couple components and cation co-additives were conducted to reveal the correlation of the cell degradation with external and internal properties. The failure modes of the cells emerged as changes in the kinetics of charge- and ion-transfer processes. An insufficient concentration of the redox complexes, in particular Co(III), was found to be the main reason for the inferior performance after ageing. The related characterization of electrolytes aged outside the solar cell devices confirms the loss of active Co(III) complexes in the device electrolytes. A new EIS feature at low frequencies emerged during ageing and was analysed. The new EIS feature demonstrates the presence of an unexpected rate-limiting, charge-transfer process in aged devices, which can be attributed to the TiO2/electrolyte interface. High-resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) was performed to identify the reduction of a part of Co(III) to Co(II) after ageing, by investigating the Co K absorption edge. The HERFD-XAS data suggested a partial reduction of Co(III) to Co(II), accompanied by a difference in symmetry of the reduced species.

11.
Phys Chem Chem Phys ; 24(48): 29850-29861, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468421

RESUMO

To gain a deeper understanding of the underlying charge processes in dye sensitized photocathodes, lateral electron hopping across dye-sensitized NiO photocathodes was investigated. For dye-sensitized systems, hole hopping across photoanodes has been studied extensively in the literature but no expansive studies on electron hopping in sensitized photocathodes exist today. Therefore, an organic p-type dye (TIP) with donor-linker-acceptor design, showing high stability and electrochemical reversibility, was used to study the electron transfer dynamics (electron-hopping) between dyes with temperature dependent spectroelectrochemistry and computational simulations. Besides intermolecular electron-hopping across the surface with a rate constant in the order of 105 s-1, our results show a second electron hopping pathway between NiO surface states with a rate constant in the order of 107 s-1, which precedes the electron hopping between the dyes. Upon application of a potential step negative enough to reduce both the dye and NiO surface states, the majority of NiO surface states need to be reduced before intermolecular electron transfer can take place. The results indicate that, in contrast to sensitized photoanodes where intermolecular charge transfer is known to influence recombination kinetics, intermolecular charge transport processes in TIP dye sensitized NiO photocathodes is less relevant because the fast electron transport between NiO surface states likely dominates recombination kinetics.

12.
Angew Chem Int Ed Engl ; 61(23): e202202733, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35299290

RESUMO

A photocatalyst comprising binary organic polymer dots (Pdots) was prepared. The Pdots were constructed from poly(9,9-dioctylfluorene-alt-benzothiadiazole), as an electron donor, and 1-[3-(methoxycarbonyl)propyl]-1-phenyl-[6.6]C61 , as an electron acceptor. The photocatalyst produces H2 O2 in alkaline conditions (1 M KOH) with a production rate of up to 188 mmol h-1 g-1 . The external quantum efficiencies were 30 % (5 min) and 14 % (75 min) at 450 nm. Furthermore, photo-oxidation of methanol by Pdots, followed by a disproportionation reaction and an oxidation reaction, produced the high-value chemical formate. On the basis of various spectroscopic and electrochemical measurements, the photophysical processes of the system were studied in detail and a reaction mechanism was proposed.

13.
J Am Chem Soc ; 143(50): 21229-21233, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34855386

RESUMO

A small organic molecule 2,1,3-benzothiadiazole-4, 7-dicarbonitrile (BTDN) is assessed for electrocatalytic hydrogen evolution on glassy carbon electrode and shows a hydrogen production Faradaic efficiency of 82% in the presence of salicylic acid. The key catalytic intermediates of reduced species BTDN-• and protonated intermediates are characterized or hypothesized by using various spectroscopic methods and density functional theory (DFT)-based calculations. With the experimental and theoretical results, a catalytic mechanism of BTDN for electrocatalytic H2 evolution is proposed.

14.
J Am Chem Soc ; 143(7): 2875-2885, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33541077

RESUMO

Panchromatic ternary polymer dots (Pdots) consisting of two conjugated polymers (PFBT and PFODTBT) based on fluorene and benzothiadiazole groups, and one small molecular acceptor (ITIC) have been prepared and assessed for photocatalytic hydrogen production with the assistance of a Pt cocatalyst. Femtosecond transient absorption spectroscopic studies of the ternary Pdots have revealed both energy and charge transfer processes that occur on the time scale of sub-picosecond between the different components. They result in photogenerated electrons being located mainly at ITIC, which acts as both electron and energy acceptor. Results from cryo-transmission electron microscopy suggest that ITIC forms crystalline phases in the ternary Pdots, facilitating electron transfer from ITIC to the Pt cocatalyst and promoting the final photocatalytic reaction yield. Enhanced light absorption, efficient charge separation, and the ideal morphology of the ternary Pdots have rendered an external quantum efficiency up to 7% at 600 nm. Moreover, the system has shown a high stability over 120 h without obvious degradation of the photocatalysts.

15.
J Am Chem Soc ; 142(43): 18668-18678, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33063996

RESUMO

Surface states of mesoporous NiO semiconductor films have particular properties differing from the bulk and are able to dramatically influence the interfacial electron transfer and adsorption of chemical species. To achieve a better performance of NiO-based p-type dye-sensitized solar cells (p-DSCs), the function of the surface states has to be understood. In this paper, we applied a modified atomic layer deposition procedure that is able to passivate 72% of the surface states on NiO by depositing a monolayer of Al2O3. This provides us with representative control samples to study the functions of the surface states on NiO films. A main conclusion is that surface states, rather than the bulk, are mainly responsible for the conductivity in mesoporous NiO films. Furthermore, surface states significantly affect dye regeneration (with I-/I3- as redox couple) and hole transport in NiO-based p-DSCs. A new dye regeneration mechanism is proposed in which electrons are transferred from reduced dye molecules to intra-bandgap states, and then to I3- species. The intra-bandgap states here act as catalysts to assist I3- reduction. A more complete mechanism is suggested to understand the particular hole transport behavior in p-DSCs, in which the hole transport time is independent of light intensity. This is ascribed to the percolation hole hopping on the surface states. When the concentration of surface states was significantly reduced, the light-independent charge transport behavior in pristine NiO-based p-DSCs transformed into having an exponential dependence on light intensity, similar to that observed in TiO2-based n-type DSCs. These conclusions on the function of surface states provide new insight into the electronic properties of mesoporous NiO films.

16.
Phys Chem Chem Phys ; 22(25): 13850-13861, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32567609

RESUMO

In order to meet the ever-growing global energy demand for affordable and clean energy, it is essential to provide this energy by renewable resources and consider the eco-efficiency of the production and abundance of the utilised materials. While this is seldom discussed in the case of technologies still in the research stage, addressing the issue of sustainability is key to push research in the right direction. Here we provide an overview of the current p-type metal oxide semiconductor materials in dye-sensitised photocathodes, considering element abundance, synthetic methods and large scale fabrication as well as the underlying physical properties that are necessary for efficient solar harvesting devices.

17.
Angew Chem Int Ed Engl ; 59(38): 16278-16293, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32329950

RESUMO

In pursuit of inexpensive and earth abundant photocatalysts for solar hydrogen production from water, conjugated polymers have shown potential to be a viable alternative to widely used inorganic counterparts. The photocatalytic performance of polymeric photocatalysts, however, is very poor in comparison to that of inorganic photocatalysts. Most of the organic photocatalysts are active in hydrogen production only when a sacrificial electron donor (SED) is added into the solution, and their high performances often rely on presence of noble metal co-catalyst (e.g. Pt). For pursuing a carbon neutral and cost-effective green hydrogen production, unassisted hydrogen production solely from water is one of the critical requirements to translate a mere bench-top research interest into the real world applications. Although this is a generic problem for both inorganic and organic types of photocatalysts, organic photocatalysts are mostly investigated in the half-reaction, and have so far shown limited success in hydrogen production from overall water-splitting. To make progress, this article exclusively discusses critical factors that are limiting the overall water-splitting in organic photocatalysts. Additionally, we also have extended the discussion to issues related to stability, accurate reporting of the hydrogen production as well as challenges to be resolved to reach 10 % STH (solar-to-hydrogen) conversion efficiency.

18.
Phys Chem Chem Phys ; 20(46): 29566, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30431629

RESUMO

Correction for 'Ultrafast dye regeneration in a core-shell NiO-dye-TiO2 mesoporous film' by Lei Tian et al., Phys. Chem. Chem. Phys., 2018, 20, 36-40.

19.
Phys Chem Chem Phys ; 20(1): 36-40, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29210392

RESUMO

In this study, a core-shell NiO-dye-TiO2 mesoporous film was fabricated for the first time, utilizing atomic layer deposition technique and a newly designed triphenylamine dye. The structure of the film was confirmed by SEM, TEM, and EDX. Excitation of the dye led to efficient and fast charge separation, by hole injection into NiO, followed by an unprecedentedly fast dye regeneration (t1/2 ≤ 500 fs) by electron transfer to TiO2. The resulting charge separated state showed a pronounced transient absorption spectrum caused by the Stark effect, and no significant decay was found within 1.9 ns. This indicates that charge recombination between NiO and TiO2 is much slower than that between the NiO and the reduced dye in the absence of the TiO2 layer (t1/2 ≈ 100 ps).

20.
Phys Chem Chem Phys ; 18(7): 5080-5, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26478116

RESUMO

Solid state p-type dye-sensitized solar cells (p-ssDSCs) have been proposed and fabricated for the first time, using the organic dye P1 as the sensitizer on mesoporous NiO and phenyl-C61-butyric acid methyl ester (PCBM) as the electron conductor. The p-ssDSC has shown an impressive open circuit photovoltage of 620 mV. Femtosecond and nanosecond transient absorption spectroscopy has given evidence for sub-ps hole injection from the excited P1 to NiO, followed by electron transfer from P1˙(-) to PCBM.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa