Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(24): 10238-10243, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34860026

RESUMO

Swift electrons can undergo inelastic interactions not only with electrons but also with near-fields, which may result in an energy loss or gain. Developments in photon-induced near-field electron microscopy (PINEM) enable direct imaging of the plasmon near-field distribution with nanometer resolution. Here, we report an analysis of the surface plasmonic near-field structure based on PINEM observations of silver nanowires. Single-photon order-selected electron images revealed the wavelike and banded structure of electric equipotential regions for a confined near-field integral associated with typical absorption of photon quanta (nℏω). Multimodal plasmon oscillations and second-harmonic generation were simultaneously observed, and the polarization dependence of plasmon wavelength and symmetry properties were analyzed. Based on advanced imaging techniques, our work has implications for future studies of the localized-field structures at interfaces and visualization of novel phenomena in nanostructures, nanosensors, and plasmonic devices.

2.
Phys Rev Lett ; 120(16): 167204, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29756913

RESUMO

Whereas theoretical investigations have revealed the significant influence of magnetic surface and edge states on Skyrmonic spin texture in chiral magnets, experimental studies of such chiral states remain elusive. Here, we study chiral edge states in an FeGe nanostripe experimentally using off-axis electron holography. Our results reveal the magnetic-field-driven formation of chiral edge states and their penetration lengths at 95 and 240 K. We determine values of saturation magnetization M_{S} by analyzing the projected in-plane magnetization distributions of helices and Skyrmions. Values of M_{S} inferred for Skyrmions are lower by a few percent than those for helices. We attribute this difference to the presence of chiral surface states, which are predicted theoretically in a three-dimensional Skyrmion model. Our experiments provide direct quantitative measurements of magnetic chiral boundary states and highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.

3.
Inorg Chem ; 55(24): 12791-12797, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989188

RESUMO

Microstructural analyses based on aberration-corrected scanning transmission electron microscopy (STEM) observations demonstrate that low-dimensional CsxBi4Te6 materials, known to be a novel thermoelectric and superconducting system, contain notable structural channels that go directly along the b axis, which can be partially filled by atom clusters depending on the thermal treatment process. We successfully prepared two series of CsxBi4Te6 single-crystalline samples using two different sintering processes. The CsxBi4Te6 samples prepared using an air-quenching method show superconductivity at approximately 4 K, while the CsxBi4Te6 with the same nominal compositions prepared by slowly cooling are nonsuperconductors. Moreover, atomic structural investigations of typical samples reveal that the structural channels are often empty in superconducting materials; thus, we can represent the superconducting phase as Cs1-yBi4Te6 with considering the point defects in the Cs layers. In addition, the channels in the nonsuperconducting crystals are commonly partially occupied by triplet Bi clusters. Moreover, the average structures for these two phases are also different in their monoclinic angles (ß), which are estimated to be 102.3° for superconductors and 100.5° for nonsuperconductors.

4.
Angew Chem Int Ed Engl ; 55(23): 6708-12, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27089044

RESUMO

The design of catalysts that are both highly active and stable is always challenging. Herein, we report that the incorporation of single metal active sites attached to the nitrogen atoms in the basal plane of graphene leads to composite materials with superior activity and stability when used as counter electrodes in dye-sensitized solar cells (DSSCs). A series of composite materials based on different metals (Mn, Fe, Co, Ni, and Cu) were synthesized and characterized. Electrochemical measurements revealed that CoN4 /GN is a highly active and stable counter electrode for the interconversion of the redox couple I(-) /I3 (-) . DFT calculations revealed that the superior properties of CoN4 /GN are due to the appropriate adsorption energy of iodine on the confined Co sites, leading to a good balance between adsorption and desorption processes. Its superior electrochemical performance was further confirmed by fabricating DSSCs with CoN4 /GN electrodes, which displayed a better power conversion efficiency than the Pt counterpart.

5.
Nanoscale ; 16(23): 11350-11352, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38836329

RESUMO

Correction for 'Ultrafast switching to zero field topological spin textures in ferrimagnetic TbFeCo films' by Kaixin Zhu et al., Nanoscale, 2024, 16, 3133-3143, https://doi.org/10.1039/D3NR04529C.

6.
Nanoscale ; 16(6): 3133-3143, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38258484

RESUMO

The capability of femtosecond (fs) laser pulses to manipulate topological spin textures on a very short time scale is sparking considerable interest. This article presents the creation of high density zero field topological spin textures by fs laser excitation in ferrimagnetic TbFeCo amorphous films. The topological spin textures are demonstrated to emerge under fs laser pulse excitation through a unique ultrafast nucleation mechanism, rather than thermal effects. Notably, large intrinsic uniaxial anisotropy could substitute the external magnetic field for the creation and stabilization of topological spin textures, which is further verified by the corresponding micromagnetic simulation. The ultrafast switching between topological trivial and nontrivial magnetic states is realized at an optimum magnitude of magnetic field and laser fluence. Our results would broaden the options to generate zero-field topological spin textures from versatile magnetic states and provides a new perspective for ultrafast switching of 0/1 magnetic states in spintronic devices.

7.
Nanomaterials (Basel) ; 14(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38334581

RESUMO

The spatiotemporal evolution of photogenerated charge carriers on surfaces and at interfaces of photoactive materials is an important issue for understanding fundamental physical processes in optoelectronic devices and advanced materials. Conventional optical probe-based microscopes that provide indirect information about the dynamic behavior of photogenerated carriers are inherently limited by their poor spatial resolution and large penetration depth. Herein, we develop an ultrafast scanning electron microscope (USEM) with a planar emitter. The photoelectrons per pulse in this USEM can be two orders of magnitude higher than that of a tip emitter, allowing the capture of high-resolution spatiotemporal images. We used the contrast change of the USEM to examine the dynamic nature of surface carriers in an InGaAs/InP avalanche photodiode (APD) after femtosecond laser excitation. It was observed that the photogenerated carriers showed notable longitudinal drift, lateral diffusion, and carrier recombination associated with the presence of photovoltaic potential at the surface. This work demonstrates an in situ multiphysics USEM platform with the capability to stroboscopically record carrier dynamics in space and time.

8.
J Nanosci Nanotechnol ; 13(6): 4123-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862459

RESUMO

The whisker-like niobium triselenide (NbSe3) nanowires were synthesized using the traditional solid state reaction. X-ray diffraction experiment suggested the monoclinic structure (P2(1)/m), and crystal morphology analysis indicated that the band-like shape is the stable morphology. Two charge density wave (CDW) states were observed at around 140 K and 50 K, respectively, and the nonlinear effect was detected in the CDW states from the R-T and I-V measurements. The doped Fe atoms, as pinning centers, play an important role in the nonlinear properties of the CDW state. Electron diffraction and HRTEM experiments were carried out at different temperatures in order to investigate the structural features and their evolution. The sets of incommensurate modulation spots with modulation vector q1 - (h, k +/- 0.243, l) appeared below 145 K, and other sets of complex superstructure spots with modulation vector q2 - (h, k + 0.3, l + 1.3424), q3 - (h, k - 0.3137, 1.5685), q4 = (1/3, k, 1) and q5 = (0.5, 0.25, 0.5) were observed at [1 0 0] and [3 0 1] zone axis at about 20 K, respectively, suggesting the complex incommensurately modulated structures in this material.

9.
Struct Dyn ; 10(6): 064102, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38026579

RESUMO

Ultrafast electron diffraction has been proven to be a powerful tool for the study of coherent acoustic phonons owing to its high sensitivity to crystal structures. However, this sensitivity leads to complicated behavior of the diffraction intensity, which complicates the analysis process of phonons, especially higher harmonics. Here, we theoretically analyze the effects of photoinduced coherent transverse and longitudinal acoustic phonons on electron diffraction to provide a guide for the exploitation and modulation of coherent phonons. The simulation of the electron diffraction was performed in 30-nm films with different optical penetration depths based on the atomic displacements obtained by solving the wave equation. The simulation results exhibit a complex relationship between the frequencies of the phonons and diffraction signals, which highly depends on the laser penetration depth, sample thickness, and temporal stress distribution. In addition, an intensity decomposition method is proposed to account for the in-phase oscillation and high harmonics caused by inhomogeneous excitation. These results can provide new perspectives and insights for a comprehensive and accurate understanding of the lattice response under coherent phonons.

10.
ACS Appl Mater Interfaces ; 15(21): 26215-26224, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37212392

RESUMO

Increasing the thickness of a superconducting layer and simultaneously reducing the thickness effect in iron-based superconducting coated conductors are particularly essential for improving the critical current Ic. Here, for the first time, we have deposited high-performance FeSe0.5Te0.5 (FST) superconducting films up to 2 µm on LaMnO3-buffered metal tapes by pulsed laser deposition. An interface engineering strategy, alternating growth of a 10 nm-thick nonsuperconducting FST seed layer and a 400 nm-thick FST superconducting layer, was employed to guarantee the crystalline quality of the films with thicknesses of the order of micrometers, resulting in a highly biaxial texture with grain boundary misorientation angle less than the critical value θc ∼ 9°. Moreover, the thickness effect, that the critical current density (Jc) shows a clear dependence on thickness as in cuprates, is reduced by the interface engineering. Also, the maximum Jc was found for a 400 nm-thick film with 1.3 MA/cm2 in self-field at 4.2 K and 0.71 MA/cm2 (H∥ab) and 0.50 MA/cm2 (H∥c) at 9 T. Anisotropic Ginzburg-Landau scaling indicates that the major pinning centers vary from correlated to uncorrelated as the film thickness increases, while the thickness effect is most likely related to the weakening of flux pinning by the fluctuation of charge-carrier mean free path (δl) and strengthening of flux pinning caused by the variation of superconducting transition temperature (δTc) due to off-stoichiometry with thickness.

11.
Nat Commun ; 14(1): 5857, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730686

RESUMO

Strong electron-photon interactions occurring in a dielectric laser accelerator provide the potential for development of a compact electron accelerator. Theoretically, metallic materials exhibiting notable surface plasmon-field enhancements can possibly generate a high electron acceleration capability. Here, we present a design for metallic material-based on-chip laser-driven accelerators that show a remarkable electron acceleration capability, as demonstrated in ultrafast electron microscopy investigations. Under phase-matching conditions, efficient and continuous acceleration of free electrons on a periodic nanostructure can be achieved. Importantly, an asymmetric spectral structure in which the vast majority of the electrons are in the energy-gain states has been obtained by means of a periodic bowtie-structure accelerator. Due to the presence of surface plasmon enhancement and nonlinear optical effects, the maximum acceleration gradient can reach as high as 0.335 GeV/m. This demonstrates that metallic laser accelerator could provide a way to develop compact accelerators on chip.

12.
J Phys Condens Matter ; 35(30)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37102208

RESUMO

Fe-based superconductors are one of the current research focuses. FeTe is unique in the series of FeSe1-xTex, since it is nonsuperconducting near the FeTe side in the phase diagram in contrast to the presence of superconductivity in other region. However, FeTe thin films become superconducting after oxygen annealing and the mechanism remains elusive. Here, we report the temperature dependences of resistivity, Hall effect and magnetoresistance (MR) of a series of FeTe thin films with different amounts of excess Fe and oxygen. These properties show dramatic changes with excess Fe and oxygen incorporation. We found the Hall coefficients are positive for the oxygen-annealed samples, in contrast to the transition from positive to negative below 50 K for the vacuum-annealed samples. For all samples, both the resistivity and Hall coefficient show a dramatic drop, respectively, at around 50 K-75 K, implying coexistence of superconductivity and antiferromagnetic order for the oxygen-annealed samples. The vacuum-annealed samples show both positive and negative values of MR depending on temperature, while negative MR dominates for the oxygen-annealed samples. We also found that oxygen annealing reduces the excess Fe in FeTe, which has been neglected before. The results are discussed in terms of several contributions, and a comparison is made between the oxygen-annealed FeTe thin films and FeSe1-xTex. This work is helpful for shedding light on the understanding of oxygen-annealed FeTe thin films.

13.
Nanoscale ; 14(29): 10477-10482, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35822870

RESUMO

Plasmon-enhanced light-matter interactions have been widely investigated in the past decades. Here, we report surface plasmon-enhanced structural dynamics in multi-walled carbon nanotubes. The optical polarization dependent dynamic properties of multi-walled carbon nanotubes are investigated using ultrafast transmission electron microscopy. Lattice contractions in the femtosecond time regime are observed upon excitation of the azimuthal plasmon by light polarized perpendicular to the tubular axis. The polarization dependence of the plasmon near field was examined using photon-induced near-field electron microscopy. The lattice changes resulting from the azimuthal plasmon enhance ultrafast alterations in both localized evanescent fields and the collective charge excitation, which play critical roles governing the light-matter interaction. These results suggest that the ultrafast responses of lattice degrees of freedom in nanomaterials could be essential for understanding the mechanism of surface plasmon enhanced effects.

14.
J Phys Condens Matter ; 33(21)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33588386

RESUMO

The microstructure of quasi-one-dimensional KCr3As3(133) superconductors, which were prepared by chemical cation deintercalation from their counterpart K2Cr3As3(233) compounds, are investigated using scanning transmission electron microscopy. The nominal KCr3As3crystals generally exhibit irregular nanoscale 133-phase domains accompanied by an amorphous As-deficient phase and cracks as a result of alkali cation deintercalation processes. Analysis of local defective structures reveals the existence of an intermediate state in the transformation from 233 to 133 phase and a possible K-deficient 233-type structure as a nanoscale cluster. Our microscopic investigations offer insight into the microstructure of KCr3As3and the alkali metal cation deintercalation processes.

15.
Nat Commun ; 12(1): 322, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436572

RESUMO

Room-temperature skyrmions in magnetic multilayers are considered to be promising candidates for the next-generation spintronic devices. Several approaches have been developed to control skyrmions, but they either cause significant heat dissipation or require ultrahigh electric fields near the breakdown threshold. Here, we demonstrate electric-field control of skyrmions through strain-mediated magnetoelectric coupling in ferromagnetic/ferroelectric multiferroic heterostructures. We show the process of non-volatile creation of multiple skyrmions, reversible deformation and annihilation of a single skyrmion by performing magnetic force microscopy with in situ electric fields. Strain-induced changes in perpendicular magnetic anisotropy and interfacial Dzyaloshinskii-Moriya interaction strength are characterized experimentally. These experimental results, together with micromagnetic simulations, demonstrate that strain-mediated magnetoelectric coupling (via strain-induced changes in both the perpendicular magnetic anisotropy and interfacial Dzyaloshinskii-Moriya interaction is responsible for the observed electric-field control of skyrmions. Our work provides a platform to investigate electric-field control of skyrmions in multiferroic heterostructures and paves the way towards more energy-efficient skyrmion-based spintronics.

16.
Nanoscale Adv ; 2(7): 2808-2813, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36132390

RESUMO

Understanding the photoinduced ultrafast structural transitions and electronic dynamics in single-walled carbon nanotubes (SWCNTs) is important for the development of SWCNT-based optoelectronic devices. In this study, we conducted femtosecond-resolved electron diffraction and electron energy-loss spectroscopy (EELS) measurements on SWCNTs using ultrafast transmission electron microscopy. The experimental results demonstrated that dominant time constants of the dynamic processes were ∼1.4 ps for electron-driven lattice expansion, ∼17.4 ps for thermal phonon-driven lattice expansion associated with electron-phonon coupling. The time-resolved EELS measurements clearly revealed a notable red shift of plasmon peaks by ∼100 meV upon femtosecond laser excitation. Different features of charge carrier excitation and relaxation were carefully discussed in correlation with the lattice dynamics and photoinduced absorption signals of SWCNTs. Our results provide a comprehensive understanding of the ultrafast dynamics in SWCNTs and powerful techniques to characterize the dynamics of low-dimensional structures.

17.
Ultramicroscopy ; 209: 112887, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31739190

RESUMO

A new design scheme for ultrafast transmission electron microscopy (UTEM) has been developed based on a Schottky-type field emission gun (FEG) at the Institute of Physics, Chinese Academy of Sciences (IOP CAS). In this UTEM setup, electron pulse emission is achieved by integrating a laser port between the electron gun and the column and the resulting microscope can operate in either continuous or pulsed mode. In pulsed mode, the optimized electron beam properties are an energy width of ~0.65 eV, micrometer-scale coherence lengths and sub-picosecond pulse durations. The potential applications of this UTEM, which include electron diffraction, high-resolution imaging, electron energy loss spectroscopy, and photon-induced near-field electron microscopy, are demonstrated using ultrafast electron pulses. Furthermore, we use a nanosecond laser (~10 ns) to show that the laser-driven FEG can support high-quality TEM imaging and electron holography when using a stroboscopic configuration. Our results also indicate that FEG-based ultrafast electron sources may enable high-performance analytical UTEM.

18.
ACS Appl Mater Interfaces ; 12(10): 12238-12245, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32052958

RESUMO

Heterostructures composed of superconductor and ferroelectrics (SC/FE) are very important for manipulating the superconducting property and applications. However, growth of high-quality superconducting iron chalcogenide films is challenging because of their volatility and FE substrate with rough surface and large lattice mismatch. Here, we report a two-step growth approach to get high-quality FeSe0.5Te0.5 (FST) films on FE Pb(Mg1/3Nb2/3)0.7Ti0.3O3 with large lattice mismatch, which show superconductivity at only around 10 nm. Through a systematic study of structural and electric transport properties of samples with different thicknesses, a mechanism to grow high-quality FST is discovered. Moreover, electric-field-induced remarkable change of Tc (superconducting transition temperature) is demonstrated in a 20 nm FST film. This work paves the way to grow high-quality films which contain volatile element and have large lattice mismatch with the substrate. It is also helpful for manipulating the superconducting property in SC/FE heterostructures.

19.
ACS Nano ; 13(10): 11623-11631, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31532630

RESUMO

Structural dynamics and changes in electronic structures driven by photoexcited carriers are critical issues in both semiconducting and optoelectronic nanodevices. Herein, a phase diagram for the transient states and relevant dynamic processes in multiwalled boron nitride nanotubes (BNNTs) has been extensively studied for a full reversible cycle after a fs-laser excitation in ultrafast TEMs, and the significant structural features and evolution of electronic natures have been investigated using pulsed electron diffraction and femtosecond-resolved electron energy-loss spectroscopy (EELS). It is revealed that nonthermal anisotropic alterations of the lattice apparently precede the phonon-driven thermal transients along the radial and axial directions. Ab initio calculations support these findings and show that electrons excited from the π to π* orbitals in the BN nanotubes weaken the intralayer bonds while strengthening the interlayer bonds along the radial direction. Importantly, time-resolved EELS measurements show contraction of the energy bandgap after fs-laser excitation associated with nonthermal structural transients. This fact verifies that laser-induced bandgap renormalization in semiconductors can essentially be correlated with both the rapid processes of excited carriers and nonthermal lattice evolution.

20.
Sci Adv ; 4(7): eaas9660, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30035223

RESUMO

The hidden (H) quantum state in 1T-TaS2 has sparked considerable interest in the field of correlated electron systems. Here, we investigate ultrafast switches to stable H charge density wave (H-CDW) states observed in 1T-TaS2-x Se x , with x = 0 and 0.5 crystals, upon excitation with a single femtosecond laser pulse. In situ cooling transmission electron microscopy observations, initiated by a single femtosecond laser pumping with a low fluence, reveal a clear transition from a commensurate CDW phase (qC) to a new CDW order with qH = (1 - δ)qC for the H-CDW state (δ = 1/9) accompanied by an evident phase separation. H-CDW domain relaxation then occurs and yields a stable metallic phase under a high-fluence excitation. Furthermore, electrical resistivity measurements show that the notable drop in x = 0 and 0.5 samples associated with the appearance of H-CDW states depend on laser fluence and temperature. These results potentially provide a new perspective on the photodoping mechanism for the emergence of H-CDW states in the 1T-TaS2-x Se x family.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa