RESUMO
Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.
Assuntos
Nanopartículas , RNA Mensageiro , Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Nanopartículas/química , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Interleucina-4/metabolismo , Diabetes Mellitus Experimental , Humanos , Lipídeos/química , Modelos Animais de Doenças , Masculino , LipossomosRESUMO
Chemotherapy-induced liver injury (CILI) is a pressing concern in cancer patients. One promising approach involves activating nuclear factor erythroid 2-related factor 2 (Nrf2) to mitigate CILI. However, selectively activating liver Nrf2 without compromising chemotherapy's efficacy has remained elusive. Herein, two RNAi delivery strategies were explored: lipid nanoparticle (LNP) and N-acetylgalactosamine (GalNAc) delivery systems loaded with siRNA designed to silence Kelch-like-ECH associated protein 1 (Keap1) by aiming for liver-specific Nrf2 activation. Remarkably, siKeap1-LNP exhibited unintended tumor targeting alongside liver effects, thereby potentially promoting tumor progression. Conversely, siKeap1-GalNAc did not compromise chemotherapy efficacy and outperformed the conventional Nrf2 activator, bardoxolone, in mitigating CILI. This study proposes siKeap1-GalNAc as a promising therapeutic avenue for liver injury. Importantly, our study bridges a crucial gap concerning the delivery system for liver targeting but not tumor targeting and underscores the importance of selecting nucleic acid delivery systems tailored to specific diseases, not just to specific organs.
Assuntos
Antineoplásicos , Hepatopatias , Neoplasias , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/terapia , Antineoplásicos/uso terapêuticoRESUMO
Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.
Assuntos
Vírus do Mosaico , Viroses , Interferência de RNA , Triticum/genética , Calmodulina/genética , Viroses/genética , Vírus do Mosaico/genética , Doenças das Plantas/genéticaRESUMO
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
RESUMO
Extracellular elastin-derived peptides (EDPs) accumulate in the aging brain and have been associated with vascular dementia and Alzheimer's disease (AD). The activation of inflammatory processes in glial cells with EDP treatment has received attention, but not in neurons. To properly understand EDPs' pathogenic significance, the impact on neuronal function and neuron-microglia crosstalk was explored further. Among the EDP molecules, Val-Gly-Val-Ala-Pro-Gly (VGVAPG) is a typical repeating hexapeptide. Here, we observed that EDPs-VGVAPG influenced neuronal survival and morphology in a dose-dependent manner. High concentrations of VGVAPG induced synapse loss and microglia hyperactivation in vivo and in vitro. Following EDP incubation, galectin 3 (Gal-3) released by neurons served as a chemokine, attracting microglial engulfment. Blocking Gal-3 and EDP binding remedied synapse loss in neurons and phagocytosis in microglia. In response to the accumulation of EDPs, proteomics in matrix remodeling and cytoskeleton dynamics, such as a disintegrin and metalloproteinase (ADAM) family, were engaged. These findings in extracellular EDPs provided more evidence for the relationship between aging and neuron dysfunction, increasing the insight of neuroinflammatory responses and the development of new specialized extracellular matrix remolding-targeted therapy options for dementia or other neurodegenerative disease.
Assuntos
Envelhecimento , Encéfalo , Elastina , Microglia , Neurônios , Neurônios/metabolismo , Neurônios/patologia , Animais , Elastina/metabolismo , Microglia/metabolismo , Microglia/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Camundongos , Masculino , Comunicação Celular/fisiologia , Camundongos Endogâmicos C57BL , Células Cultivadas , Galectina 3/metabolismo , HumanosRESUMO
Females with existing high-risk HPV (HR-HPV) infections remain at risk of subsequent multiple or recurrent infections, on which benefit from HPV vaccines was under-reported. We pooled individual-level data from four large-scale, RCTs of AS04-HPV-16/18 vaccine to evaluate efficacy and immunogenicity in females DNA-positive to any HR-HPV types at first vaccination. Females receiving the AS04-HPV-16/18 vaccine in the original RCTs constituted the vaccine group in the present study, while those unvaccinated served as the control group. Vaccine efficacy (VE) against new infections and associated cervical intraepithelial neoplasia (CIN) 2+ in females DNA-negative to the considered HR-HPV type but positive to any other HR-HPV types, VE against reinfections in females DNA-positive to the considered HR-HPV type but cleared naturally during later follow-up, and levels of anti-HPV-16/18 IgG were assessed. Our final analyses included 5137 females (vaccine group = 2532, control group = 2605). The median follow-up time was 47.88 months (IQR: 45.72-50.04). For the prevention of precancerous lesions related to the non-infected HR-HPV types at baseline, VE against HPV-16/18 related CIN 2+ was 82.70% (95% CI: 63.70-93.00%). For the prevention of reinfections related to the infected HR-HPV types following natural clearance, VE against HPV-16/18 12MPI was non-significant (p > .05), albeit robust immunity persisted for at least 48 months. Females with existing HR-HPV infections at first vaccination still benefit from vaccination in preventing precancers related to the non-infected types at baseline. VE against reinfections related to the infected types following natural clearance remains to be further investigated.
Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano 16 , Vacinas contra Papillomavirus/uso terapêutico , Reinfecção/complicações , Papillomavirus Humano 18 , Vacinação , DNARESUMO
Mitochondrial therapy is a promising new strategy that offers the potential to achieve precise disease diagnosis or maximum therapeutic response. However, versatile mitochondrial theranostic platforms that integrate biomarker detection and therapy have rarely been exploited. Here, we report a charge-reversal nanomedicine activated by an acidic microenvironment for mitochondrial microRNA (mitomiR) detection and ion-interference therapy. The transporter liposome (DD-DC) was constructed from a pH-responsive polymer and a positively charged phospholipid, encapsulating NaCl nanoparticles with coloading of the aggregation-induced emission (AIE) fluorogens AIEgen-DNA/G-quadruplexes precursor and brequinar (NAB@DD-DC). The negatively charged nanomedicine ensured good blood stability and high tumor accumulation, while the charge-reversal to positive in response to the acidic pH in the tumor microenvironment (TME) and lysosomes enhanced the uptake by tumor cells and lysosome escape, achieving accumulation in mitochondria. The subsequently released Na+ in mitochondria not only contributed to the formation of mitomiR-494 induced G-quadruplexes for AIE imaging diagnosis but also led to an osmolarity surge that was enhanced by brequinar to achieve effective ion-interference therapy.
Assuntos
Compostos de Bifenilo , Quadruplex G , MicroRNAs , Nanopartículas , Neoplasias , Quinaldinas , Humanos , Cloreto de Sódio , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Mitocôndrias , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
Microdevices that offer hyperglycemia monitoring and controllable drug delivery are urgently needed for daily diabetes management. Herein, a theranostic separable double-layer microneedle (DLMN) patch consisting of a swellable GelMA supporting base layer for glycemia sensing and a phase-change material (PCM) arrowhead layer for hyperglycemia regulation has been fabricated. The Cu-TCPP(Fe)/glucose oxidase composite and 3,3',5,5'-tetramethylbenzidine coembedded in the supporting base layer permit a visible color shift at the base surface in the presence of glucose via a cascade reaction, allowing for the in situ detection of glucose in interstitial fluid. The PCM arrowhead layer is encapsulated with water monodispersity melanin nanoparticles from Sepia officinalis and metformin that is imparted with a near-infrared ray photothermal response feature, which is beneficial to the controllable release of metformin for suppression of hyperglycemia. By applying the DLMN patch to the streptozotocin-induced type 2 diabetic Sprague-Dawley rat model, the results demonstrated that it can effectively extract dermal interstitial fluid, read out glucose levels, and regulate hyperglycemia. This DLMN-integrated portable colorimetric sensor and self-regulated glucose level hold great promise for daily diabetes management.
RESUMO
BACKGROUND: Weed control is essential for agricultural floor management in vineyards and the inter-row mulching is an eco-friendly practice to inhibit weed growth via filtering out photosynthetically active radiation. Besides weed suppression, inter-row mulching can influence grapevine growth and the accumulation of metabolites in grape berries. However, the complex interaction of multiple factors in the field challenges the understanding of molecular mechanisms on the regulated metabolites. In the current study, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017) from anthesis to harvest. Metabolomics and transcriptomics analysis were conducted in two vintages, aiming to provide insights into metabolic and molecular responses of Cabernet Sauvignon grapes to M in a semi-arid climate. RESULTS: Upregulation of genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered heat stress, resulting in lower sugar-acid ratio at harvest. Key genes responsible for enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes, and norisoprenoids in M grapes were identified. In addition, several modules significantly correlated with the metabolic biomarkers through weighted correlation network analysis, and the potential key transcription factors regulating the above metabolites including VviGATA11, VviHSFA6B, and VviWRKY03 were also identified. CONCLUSION: This study provides a valuable overview of metabolic and transcriptomic responses of M grapes in semi-arid climates, which could facilitate understanding the complex regulatory network of metabolites in response to microclimate changes.
Assuntos
Vitis , Vinho , Vitis/metabolismo , Transcriptoma , Antocianinas/metabolismo , Microclima , Fazendas , Frutas , Vinho/análiseRESUMO
Acidic water electrolysis is of considerable interest due to its higher current density operation and energy conversion efficiency, but its real industrial application is highly limited by the shortage of efficient, stable, and cost-effective acidic oxygen evolution reaction (OER) electrocatalysts. Here, an electrocatalyst consisting of Ni-implanted RuO2 supported is reported on α-MnO2 (MnO2/RuO2-Ni) that shows high activity and remarkable durability in acidic OER. Precisely, the MnO2/RuO2-Ni catalyst shows an overpotential of 198 mV at a current density of 10 mA cm-2 and can operate continuously and stably for 400 h (j = 10 mA cm-2) without any obvious attenuation of activity, making it one of the best-performing acid-stable OER catalysts. Experimental results, in conjunction with density functional theory calculations, demonstrate that the interface electron transfer effect from RuO2 to MnO2, further enhanced by Ni incorporation, effectively modulates the adsorption of OOH* and significantly reduces the overpotential, thereby enhancing catalytic activity and durability.
RESUMO
The rational design of polysulfide electrocatalysts is of vital importance to achieve longevous LiâS batteries. Notwithstanding fruitful advances made in elevating electrocatalytic activity, efforts to regulate precatalyst phase evolution and protect active sites are still lacking. Herein, an in situ graphene-encapsulated bimetallic model catalyst (CoNi@G) is developed for striking a balance between electrocatalytic activity and stability for sulfur electrochemistry. The layer numbers of directly grown graphene can be dictated by tuning the synthetic duration. Exhaustive experimental and theoretical analysis comprehensively reveals that the tailored graphene chainmail boosts catalytic durability while guaranteeing moderate phase evolution, accordingly attaining a decorated surface sulfidation with advanced catalytic essence. Benefiting from the sustainable polysulfide electrocatalysis, CoNi@G enabled sulfur electrodes to harvest a capacity output of 1276.2 mAh g-1 at 0.2 C and a negligible capacity decay of 0.055% per cycle after 1000 cycles at 1.0 C. Such a maneuver can be readily extended to other metallic catalysts including NiFe, CoFe, or Co. The work elucidates the precatalyst phase evolution mechanism through a controllable graphene-armored strategy, offering meaningful guidance to realize durable electrocatalysts in LiâS batteries.
RESUMO
As an essential macronutrient, phosphorus (P) is often a limiting nutrient because of its low availability and mobility in soils. Drought is a major environmental stress that reduces crop yield. How plants balance and combine P-starvation responses (PSRs) and drought resistance is unclear. In this study, we identified the transcription factor ZmPHR1 as a major regulator of PSRs that modulates phosphate (Pi) signaling and homeostasis. We found that maize zmphr1 mutants had reduced P concentration and were sensitive to Pi starvation, whereas ZmPHR1-OE lines displayed elevated Pi concentration and yields. In addition, 57% of PSR genes and nearly 70% of ZmPHR1-regulated PSR genes in leaves were transcriptionally responsive to drought. Under moderate and early drought conditions, the Pi concentration of maize decreased, and PSR genes were up-regulated before drought-responsive genes. The ZmPHR1-OE lines exhibited drought-resistant phenotypes and reduced stomatal apertures, whereas the opposite was true of the zmphr1 mutants. ZmPT7-OE lines and zmspx3 mutants, which had elevated Pi concentration, also exhibited drought resistance, but zmpt7 mutants were sensitive to drought. Our results suggest that ZmPHR1 plays a central role in integrating Pi and drought signals and that Pi homeostasis improves the ability of maize to combat drought.
Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Homeostase , Fosfatos , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Fosfatos/metabolismo , Fosfatos/deficiência , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação , Estresse Fisiológico/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Resistência à SecaRESUMO
PURPOSE: To comprehensively investigate the diagnostic performance of routinely used assays in MPXV testing, the National Center of Clinical Laboratories in China conducted a nationwide external quality assessment (EQA) scheme and an evaluated nine assays used by ≥ 5 laboratories in the EQA. METHODS: MPXV virus-like particles with 2700, 900 and 300 copies/mL were distributed to 195 EQA laboratories. For extended analysis, triple-diluted samples from 9000 to 4.12 copies/mL were repeated 20 times using the assays employed by ≥ 5 laboratories. The diagnostic performance was assessed by analyzing EQA data and calculating the limits of detection (LODs). RESULTS: The performance was competent in 87.69% (171/195) of the participants and 87.94% (175/199) of the datasets. The positive percentage agreements (PPAs) were greater than 99% for samples at 2700 and 900 copies/mL, and 95.60% (761/796) for samples at 300 copies/mL. The calculated LODs for the two clades ranged from 228.44 to 924.31 copies/mL and were greater than the LODs specified by the respective kits. EasyDiagnosis had the lowest calculated LODs and showed superior performance in EQA, whereas BioGerm and Sansure, with higher calculated LODs, did not perform well in EQA. CONCLUSION: This study provides valuable information from the EQA data and evaluation of the diagnostic performance of MPXV detection assays. It also provided insights into reagent optimization and enabled prompt public health interventions for the outbreak.
Assuntos
Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , China/epidemiologia , Limite de Detecção , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Monkeypox virus/genética , Monkeypox virus/isolamento & purificaçãoRESUMO
OBJECTIVE: Early identification of modifiable risk factors is crucial for the prevention of constipation. This study systematically investigated the relationship between genetically predicted modifiable risk factors and constipation. METHODS: The inverse variance weighting (IVW) method was employed as the primary analytical approach. For similar exposure indicators, the multivariate Mendelian randomization (MVMR) method was used to adjust for potential biases in univariate MR analysis. The robustness of the results was further evaluated using the MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis. Bonferroni correction was applied to reduce the false positive rate in the results. RESULTS: The IVW analysis indicated a significant causal association between genetically predicted gastroesophageal reflux disease [OR (95% CI) = 1.192 (1.079-1.315), P = 0.0005], atorvastatin use [OR (95% CI) = 16.995 (3.327-86.816), P = 0.0007], and constipation. Additionally, there was a potential causal association between education level [OR (95% CI) = 0.859 (0.767-0.964), P = 0.009], major depressive disorder [OR (95% CI) = 1.206 (1.041-1.399), P = 0.013], hypothyroidism [OR (95% CI) = 2.299 (1.327-3.985), P = 0.003], and aspirin use [OR (95% CI) = 4.872 (1.174-20.221), P = 0.029] with constipation. No causal associations were found for the other included indicators. Sensitivity analysis demonstrated the absence of evidence for heterogeneity and pleiotropy in any positive results. CONCLUSION: This study identified several risk factors that could be targeted for the prevention of constipation, offering valuable insights for public health policies.
Assuntos
Constipação Intestinal , Análise da Randomização Mendeliana , Humanos , Constipação Intestinal/epidemiologia , Fatores de Risco , Refluxo Gastroesofágico/complicações , Refluxo Gastroesofágico/genética , Polimorfismo de Nucleotídeo Único , Escolaridade , Predisposição Genética para DoençaRESUMO
Autism is often comorbid with other psychiatric disorders. We have previously shown that Dip2a knockout (KO) induces autism-like behaviors in mice. However, the role of Dip2a in other psychiatric disorders remains unclear. In this paper, we revealed that Dip2a KO mice had comorbid anxiety. Dip2a KO led to a reduction in the dendritic length of cortical and hippocampal excitatory neurons. Molecular mechanism studies suggested that AMPK was overactivated and suppressed the mTOR cascade, contributing to defects in dendritic morphology. Deletion of Dip2a in adult-born hippocampal neurons (Dip2a conditional knockout (cKO)) increased susceptibility to anxiety upon acute stress exposure. Application of (2R,6R)-hydroxynorketamine (HNK), an inhibitor of mTOR, rescued anxiety-like behaviors in Dip2a KO and Dip2a cKO mice. In addition, 6 weeks of high-fat diet intake alleviated AMPK-mTOR signaling and attenuated the severity of anxiety in both Dip2a KO mice and Dip2a cKO mice. Taken together, these results reveal an unrecognized function of DIP2A in anxiety pathophysiology via regulation of AMPK-mTOR signaling.
Assuntos
Proteínas Quinases Ativadas por AMP , Transdução de Sinais , Camundongos , Animais , Camundongos Knockout , Serina-Treonina Quinases TOR/metabolismo , Ansiedade/genética , Proteínas NuclearesRESUMO
Tumors desmoplastic microenvironments are characterized by abundant stromal cells and extracellular matrix (ECM) deposition. Cancer-associated fibroblasts (CAFs), as the most abundant of all stromal cells, play significant role in mediating microenvironments, which not only remodel ECM to establish unique pathological barriers to hinder drug delivery in desmoplastic tumors, but also talk with immune cells and cancer cells to promote immunosuppression and cancer stem cells-mediated drug resistance. Thus, CAFs mediated desmoplastic microenvironments will be emerging as promising strategy to treat desmoplastic tumors. However, due to the complexity of microenvironments and the heterogeneity of CAFs in such tumors, an effective deliver system should be fully considered when designing the strategy of targeting CAFs mediated microenvironments. Engineered exosomes own powerful intercellular communication, cargoes delivery, penetration and targeted property of desired sites, which endow them with powerful theranostic potential in desmoplastic tumors. Here, we illustrate the significance of CAFs in tumors desmoplastic microenvironments and the theranostic potential of engineered exosomes targeting CAFs mediated desmoplastic microenvironments in next generation personalized nano-drugs development.
Assuntos
Fibroblastos Associados a Câncer , Exossomos , Microambiente Tumoral , Fibroblastos Associados a Câncer/metabolismo , Exossomos/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Humanos , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Sistemas de Liberação de Medicamentos/métodos , Matriz Extracelular/metabolismo , Antineoplásicos/farmacologiaRESUMO
Gefitinib is the first-generation drug of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) metabolised by the cytochrome P450 and transported by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). In the present study, the pharmacokinetics of gefitinib in healthy Chinese volunteers was investigated and the effect of genetic polymorphisms on its variability was evaluted.Forty-five healthy volunteers were administered a single dose of gefitinib and the blood samples were used for quantifying the concentration of gefitinib and genotyping fifteen single-nucleotide polymorphisms of cytochrome P450 enzymes (CYP3A4, CYP3A5, CYP2D6, CYP2C9 and CYP2C19) and drug transporters (ABCB1 and ABCG2).CYP3A5*3 (rs776746) polymorphism showed a significant influence, with higher gefitinib AUC0-t in carrier of CC genotype than in CT/TT genotype (BH-adjusted p value <0.05). For CYP2C9*3 (rs1057910), significant differences in pharmacokinetics of gefitinib were detected between carriers of AA and AC genotypes, with higher AUC0-t, AUC0-∞ and Cmax in carrier of AC genotype than in AA gen-otype (BH-adjusted p value <0.05). No associations were found between SNPs in CYP3A4, CYP2D6, CYP2C19, ABCB1, ABCG2 and the pharmacokinetics of gefitinib.The SNPs in CYP3A5*3 (rs776746) and CYP2C9*3 (rs1057910) were found to be associated with altered gefitinib pharmacokinetics in healthy Chinese volunteers.
Assuntos
Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Gefitinibe , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Voluntários Saudáveis , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Polimorfismo de Nucleotídeo Único , Genótipo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , ChinaRESUMO
The temperature and strain fields monitoring during the preparation process of buoyancy materials, as well as the health status after molding, are important for mastering the mechanical properties of buoyancy materials and ensuring the safety of operators and equipment. This paper proposes a short and high-density femtosecond fiber Bragg grating (fs-FBG) array based on different temperature coefficients fibers. By optimizing the parameters of femtosecond laser point-by-point writing technology, high-performance fs-FBG arrays with millimeter level gating length and millimeter level spatial resolution were prepared on two types of fibers. These were successfully embedded in buoyancy materials to achieve in-situ online monitoring of the curing process and after molding. The experimental results show that the fs-FBG array sensor has good anti-chirp performance and achieves online monitoring of millimeter-level spatial resolution. Intelligent buoyancy materials can provide real-time feedback on the health status of equipment in harsh underwater environments. The system can achieve temperature monitoring with an accuracy of 0.56 °C and deformation monitoring with sub-millimeter accuracy; the error is in the order of micrometers, which is of great significance in the field of deep-sea exploration.
RESUMO
Muscles play an indispensable role in human life. Surface electromyography (sEMG), as a non-invasive method, is crucial for monitoring muscle status. It is characterized by its real-time, portable nature and is extensively utilized in sports and rehabilitation sciences. This study proposed a wireless acquisition system based on multi-channel sEMG for objective monitoring of grip force. The system consists of an sEMG acquisition module containing four-channel discrete terminals and a host computer receiver module, using Bluetooth wireless transmission. The system is portable, wearable, low-cost, and easy to operate. Leveraging the system, an experiment for grip force prediction was designed, employing the bald eagle search (BES) algorithm to enhance the Random Forest (RF) algorithm. This approach established a grip force prediction model based on dual-channel sEMG signals. As tested, the performance of acquisition terminal proceeded as follows: the gain was up to 1125 times, and the common mode rejection ratio (CMRR) remained high in the sEMG signal band range (96.94 dB (100 Hz), 84.12 dB (500 Hz)), while the performance of the grip force prediction algorithm had an R2 of 0.9215, an MAE of 1.0637, and an MSE of 1.7479. The proposed system demonstrates excellent performance in real-time signal acquisition and grip force prediction, proving to be an effective muscle status monitoring tool for rehabilitation, training, disease condition surveillance and scientific fitness applications.
Assuntos
Algoritmos , Eletromiografia , Força da Mão , Eletromiografia/métodos , Humanos , Força da Mão/fisiologia , Masculino , Processamento de Sinais Assistido por Computador , Adulto , Dispositivos Eletrônicos Vestíveis , Músculo Esquelético/fisiologia , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Tecnologia sem Fio/instrumentaçãoRESUMO
Ulcerative colitis (UC) is a severe hazard to human health. Since pathogenesis of UC is still unclear, current therapy for UC treatment is far from optimal. Isoxanthohumol (IXN), a prenylflavonoid from hops and beer, possesses anti-microbial, anti-oxidant, anti-inflammatory, and anti-angiogenic properties. However, the potential effects of IXN on the alleviation of colitis and the action of the mechanism is rarely studied. Here, we found that administration of IXN (60 mg/kg/day, gavage) significantly attenuated dextran sodium sulfate (DSS)-induced colitis, evidenced by reduced DAI scores and histological improvements, as well as suppressed the pro-inflammatory Th17/Th1 cells but promoted the anti-inflammatory Treg cells. Mechanically, oral IXN regulated T cell development, including inhibiting CD4+ T cell proliferation, promoting apoptosis, and regulating Treg/Th17 balance. Furthermore, IXN relieved colitis by restoring gut microbiota disorder and increasing gut microbiota diversity, which was manifested by maintaining the ratio of Firmicutes/Bacteroidetes balance, promoting abundance of Bacteroidetes and Ruminococcus, and suppressing abundance of proteobacteria. At the same time, the untargeted metabolic analysis of serum samples showed that IXN promoted the upregulation of D-( +)-mannose and L-threonine and regulated pyruvate metabolic pathway. Collectively, our findings revealed that IXN could be applied as a functional food component and served as a therapeutic agent for the treatment of UC.