Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(39): e2201443119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122215

RESUMO

Atherosclerosis treatments by gene regulation are garnering attention, yet delivery of gene cargoes to atherosclerotic plaques remains inefficient. Here, we demonstrate that assembly of therapeutic oligonucleotides into a three-dimensional spherical nucleic acid nanostructure improves their systemic delivery to the plaque and the treatment of atherosclerosis. This noncationic nanoparticle contains a shell of microRNA-146a oligonucleotides, which regulate the NF-κB pathway, for achieving transfection-free cellular entry. Upon an intravenous injection into apolipoprotein E knockout mice fed with a high-cholesterol diet, this nanoparticle naturally targets class A scavenger receptor on plaque macrophages and endothelial cells, contributing to elevated delivery to the plaques (∼1.2% of the injected dose). Repeated injections of the nanoparticle modulate genes related to immune response and vascular inflammation, leading to reduced and stabilized plaques but without inducing severe toxicity. Our nanoparticle offers a safe and effective treatment of atherosclerosis and reveals the promise of nucleic acid nanotechnology for cardiovascular disease.


Assuntos
Aterosclerose , MicroRNAs , Nanopartículas , Placa Aterosclerótica , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Células Endoteliais/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/uso terapêutico , NF-kappa B/genética , NF-kappa B/metabolismo , Nanopartículas/química , Nanopartículas/uso terapêutico , Oligonucleotídeos/uso terapêutico , Placa Aterosclerótica/metabolismo , Receptores Depuradores/metabolismo
2.
Eur J Neurosci ; 59(7): 1428-1440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151046

RESUMO

Methamphetamine use disorder (MAUD) can substantially jeopardize public security due to its high-risk social psychology and behaviour. Given that the dopamine reward system is intimately correlated with MAUD, we investigated the association of single nucleotide polymorphisms (SNPs), as well as methylation status of dopamine receptor type 4 (DRD4), catechol-O-methyltransferase (COMT) genes, and paranoid and motor-impulsive symptoms in MAUD patients. A total of 189 MAUD patients participated in our study. Peripheral blood samples were used to detect 3 SNPs and 35 CpG units of methylation in the DRD4 gene promoter region and 5 SNPs and 39 CpG units in the COMT gene. MAUD patients with the DRD4 rs1800955 C allele have a lower percentage of paranoid symptoms than those with the rs1800955 TT allele. Individuals with paranoid symptoms exhibited a reduced methylation degree at a particular DRD4 CpG2.3 unit. The interaction of the DRD4 rs1800955 C allele and the reduced DRD4CpG2.3 methylation degree were associated with a lower occurrence of paranoid symptoms. Meanwhile, those with the COMT rs4818 CC allele had lower motor-impulsivity scores in MAUD patients but greater COMT methylation levels in the promoter region and methylation degree at the COMT CpG 51.52 unit. Therefore, based only on the COMT rs4818 CC polymorphism, there was a negative correlation between COMT methylation and motor-impulsive scores. Our preliminary results provide a clue that the combination of SNP genotype and methylation status of the DRD4 and COMT genes serve as biological indicators for the prevalence of relatively high-risk psychotic symptoms in MAUD patients.


Assuntos
Metanfetamina , Polimorfismo de Nucleotídeo Único , Humanos , Catecol O-Metiltransferase/genética , Dopamina , Metanfetamina/efeitos adversos , Genótipo , Metilação
3.
Circ Res ; 131(5): 424-441, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35899624

RESUMO

BACKGROUND: Inflamed endothelial cells (ECs) trigger atherogenesis, especially at arterial regions experiencing disturbed blood flow. UCP2 (Uncoupling protein 2), a key mitochondrial antioxidant protein, improves endothelium-dependent relaxation in obese mice. However, whether UCP2 can be regulated by shear flow is unknown, and the role of endothelial UCP2 in regulating inflammation and atherosclerosis remains unclear. This study aims to investigate the mechanoregulation of UCP2 expression in ECs and the effect of UCP2 on endothelial inflammation and atherogenesis. METHODS: In vitro shear stress simulation system was used to investigate the regulation of UCP2 expression by shear flow. EC-specific Ucp2 knockout mice were used to investigate the role of UCP2 in flow-associated atherosclerosis. RESULTS: Shear stress experiments showed that KLF2 (Krüppel-like factor 2) mediates fluid shear stress-dependent regulation of UCP2 expression in human aortic and human umbilical vein ECs. Unidirectional shear stress, statins, and resveratrol upregulate whereas oscillatory shear stress and proinflammatory stimuli inhibit UCP2 expression through altered KLF2 expression. KLF2 directly binds to UCP2 promoter to upregulate its transcription in human umbilical vein ECs. UCP2 knockdown induced expression of genes involved in proinflammatory and profibrotic signaling, resulting in a proatherogenic endothelial phenotype. EC-specific Ucp2 deletion promotes atherogenesis and collagen production. Additionally, we found endothelial Ucp2 deficiency aggravates whereas adeno-associated virus-mediated EC-Ucp2 overexpression inhibits carotid atherosclerotic plaque formation in disturbed flow-enhanced atherosclerosis mouse model. RNA-sequencing analysis revealed FoxO1 (forkhead box protein O1) as the major proinflammatory transcriptional regulator activated by UCP2 knockdown, and FoxO1 inhibition reduced vascular inflammation and disturbed flow-enhanced atherosclerosis. We showed further that UCP2 level is critical for phosphorylation of AMPK (AMP-activated protein kinase), which is required for UCP2-induced inhibition of FoxO1. CONCLUSIONS: Altogether, our studies uncover that UCP2 is novel mechanosensitive gene under the control of fluid shear stress and KLF2 in ECs. UCP2 expression is critical for endothelial proinflammatory response and atherogenesis. Therapeutic strategies enhancing UCP2 level may have therapeutic potential against atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Proteína Desacopladora 2/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Células Cultivadas , Endotélio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Placa Aterosclerótica/metabolismo , Estresse Mecânico
4.
Acta Pharmacol Sin ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886550

RESUMO

Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 µM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.

5.
J Sports Sci ; 41(16): 1547-1557, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37963176

RESUMO

Increasing daily physical activity (PA) is a practical way to decrease the risk of cardiometabolic diseases, while the studies on exercise intensity remain limited. The purpose of the present study was to compare the effects of increasing light PA (LPA) or moderate-to-vigorous PA (MVPA) for 12 weeks on cardiometabolic markers in Chinese adults with obesity. Fifty-three adults were randomly assigned to the 1) control group, 2) LPA group, and 3) MVPA group in free-living settings. The intervention effects on body composition, cardiorespiratory fitness, and cardiometabolic biomarkers were analysed using a generalized estimated equation model adjusted for baseline values and potential confounders. Compared with the control group, the MVPA group showed improvements in body composition, lipids, C-peptide, monocyte chemoattractant protein-1 (MCP-1), interleukin-8, leptin, and E-selectin. A favourable change in triglycerides and E-selectin were observed in the LPA group when compared to the control group. Lastly, improvements in waist circumference, C-reactive protein, and MCP-1 were observed in the MVPA group when compared to those in the LPA group. Although increasing both LPA and MVPA improved certain cardiometabolic biomarkers, the latter may have more benefits. These findings imply that MVPA may reduce cardiometabolic disease risk more effectively than LPA, especially in Chinese adults with obesity.


Assuntos
Doenças Cardiovasculares , Selectina E , Adulto , Humanos , Comportamento Sedentário , Obesidade , Exercício Físico , Doenças Cardiovasculares/prevenção & controle , Biomarcadores , China , Circunferência da Cintura
6.
Nano Lett ; 22(8): 3400-3409, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35436127

RESUMO

DNA nanostructures are attractive gene carriers for nanomedicine applications, yet their delivery to the nucleus remains inefficient. We present the application of extracellular mechanical stimuli to activate cellular mechanotransduction for boosting the intranuclear delivery of DNA nanostructures. Treating mammalian cells with polythymidine-rich spherical nucleic acids (poly(T) SNAs) under gentle compression by a single coverslip leads to up to ∼50% nuclear accumulation without severe endosomal entrapment, cytotoxicity, or long-term membrane damage; no chemical modification or transfection reagent is needed. Gentle compression activates Rho-ROCK mechanotransduction and causes nuclear translocation of YAP. Joint compression and treatment with poly(T) oligonucleotides upregulate genes linked to myosin, actin filament, and nuclear import. In turn, Rho-ROCK, myosin, and importin mediate the nuclear entry of poly(T) SNAs. Treatment of endothelioma cells with poly(T) SNAs bearing antisense oligonucleotides under compression inhibits an intranuclear oncogene. Our data should inspire the marriage of DNA nanotechnology and cellular biomechanics for intranuclear applications.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Animais , DNA/genética , Mamíferos , Mecanotransdução Celular , Nanomedicina , Ácidos Nucleicos/química
7.
Prostate ; 82(1): 13-25, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34570375

RESUMO

INTRODUCTION: Androgen deprivation therapy (ADT) is a key treatment modality in the management of prostate cancer (PCa), especially for patients with metastatic disease. Increasing evidences suggest that patients who received ADT have increased incidence of diabetes, myocardial infarction, stroke, and even mortality. It is important to understand the pathophysiological mechanisms on how ADT increases cardiovascular risk and induces cardiovascular events, which would provide important information for potential implementation of preventive measures. METHODS: Twenty-six 12-week-old male SD rats were divided into four groups for different types of ADTs including: the bilateral orchidectomy group (Orx), LHRH agonist group (leuprolide), LHRH antagonist group (degarelix), and control group. After treated with drug or adjuvant injection every 3 weeks for 24 weeks, all rats were sacrificed and total blood were collected. Aorta, renal arteries, and kidney were preserved for functional assay, immunohistochemistry, western blot, and quantitative reverse-transcription polymerase chain reaction. RESULTS: In vascular reactivity assays, aorta, intrarenal, and coronary arteries of all three ADT groups showed endothelial dysfunction. AT1R and related molecules at protein and messenger RNA (mRNA) level were tested, and AT1R pathway was shown to be activated and played a role in endothelial dysfunction. Both ACE and AT1R mRNA levels were doubled in the aorta in the leuprolide group while Orx and degarelix groups showed upregulation of AT1R in the kidney tissues. By immunohistochemistry, our result showed higher expression of AT1R in the intrarenal arteries of leuprolide and degarelix groups. The role of reactive oxygen species in endothelial dysfunction was confirmed by DHE fluorescence, nitrotyrosine overexpression, and upregulation of NOX2 in the different ADT treatment groups. CONCLUSION: ADT causes endothelial dysfunction in male rats. GnRH receptor agonist compared to GnRH receptor antagonist, showed more impairment of endothelial function in the aorta and intrarenal arteries. Such change might be associated with upregulation and activation of AngII-AT1R-NOX2 induced oxidative stress in the vasculature. These results help to explain the different cardiovascular risks and outcomes related to different modalities of ADT treatment.


Assuntos
Antagonistas de Androgênios , Artérias , Endotélio Vascular , Leuprolida , Oligopeptídeos , Orquiectomia/métodos , Antagonistas de Androgênios/efeitos adversos , Antagonistas de Androgênios/análise , Antagonistas de Androgênios/metabolismo , Animais , Artérias/efeitos dos fármacos , Artérias/metabolismo , Artérias/patologia , Correlação de Dados , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Fatores de Risco de Doenças Cardíacas , Imuno-Histoquímica , Leuprolida/administração & dosagem , Leuprolida/efeitos adversos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/efeitos adversos , Ratos , Espécies Reativas de Oxigênio/análise , Receptor Tipo 1 de Angiotensina/análise , Receptor Tipo 1 de Angiotensina/metabolismo
8.
Nature ; 540(7634): 579-582, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27926730

RESUMO

The Yorkie homologues YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif, also known as WWTR1), effectors of the Hippo pathway, have been identified as mediators for mechanical stimuli. However, the role of YAP/TAZ in haemodynamics-induced mechanotransduction and pathogenesis of atherosclerosis remains unclear. Here we show that endothelial YAP/TAZ activity is regulated by different patterns of blood flow, and YAP/TAZ inhibition suppresses inflammation and retards atherogenesis. Atheroprone-disturbed flow increases whereas atheroprotective unidirectional shear stress inhibits YAP/TAZ activity. Unidirectional shear stress activates integrin and promotes integrin-Gα13 interaction, leading to RhoA inhibition and YAP phosphorylation and suppression. YAP/TAZ inhibition suppresses JNK signalling and downregulates pro-inflammatory genes expression, thereby reducing monocyte attachment and infiltration. In vivo endothelial-specific YAP overexpression exacerbates, while CRISPR/Cas9-mediated Yap knockdown in endothelium retards, plaque formation in ApoE-/- mice. We also show several existing anti-atherosclerotic agents such as statins inhibit YAP/TAZ transactivation. On the other hand, simvastatin fails to suppress constitutively active YAP/TAZ-induced pro-inflammatory gene expression in endothelial cells, indicating that YAP/TAZ inhibition could contribute to the anti-inflammatory effect of simvastatin. Furthermore, activation of integrin by oral administration of MnCl2 reduces plaque formation. Taken together, our results indicate that integrin-Gα13-RhoA-YAP pathway holds promise as a novel drug target against atherosclerosis.

9.
Nano Lett ; 21(4): 1839-1847, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33586442

RESUMO

Nanosubstrate engineering is an established approach for modulating cellular responses, but it remains infrequently exploited to facilitate the intracellular delivery of nanoparticles (NPs). We report nanoscale roughness of the extracellular environment as a critical parameter for regulating the cellular uptake of NPs. After seeding cells atop a substrate that contains randomly immobilized gold NPs (termed AuNP-S) with sub-10 nm surface roughness, we demonstrate that such cells internalize up to ∼100-fold more poly(ethylene glycol)-coated AuNPs (Au@PEG NPs) than those cells seeded on a conventional flat culture plate. Our result is generalizable to 4 different cell types and Au@PEG NPs modified with 13 different hydrocarbyl functional groups. Conditioning cells to AuNP-S not only leads to upregulation of clathrin- and integrin-related genes, but also supports elevated uptake of Au@PEG NPs via clathrin-mediated endocytosis. Our data suggest a simple and robust method for boosting the intracellular delivery of nanomedicines by nanosubstrate engineering.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Clatrina , Endocitose , Ouro , Polietilenoglicóis
10.
J Biol Chem ; 295(36): 12573-12587, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32605924

RESUMO

The herb dwarf lilyturf tuber (Maidong, Ophiopogonis Radix) is widely used in Chinese traditional medicine to manage diabetes and its complications. However, the role of Maidong polysaccharide extract (MPE) in pancreatic ß-cell function is unclear. Here, we investigated whether MPE protects ß-cell function and studied the underlying mechanisms. We treated db/db and high-fat diet (HFD)-induced obese mice with 800 or 400 mg/kg MPE or water for 4 weeks, followed by an oral glucose tolerance test. Pancreas and blood were collected for molecular analyses, and clonal MIN6 ß-cells and primary islets from HFD-induced obese mice and normal chow diet-fed mice were used in additional analyses. In vivo, MPE both increased insulin secretion and reduced blood glucose in the db/db mice but increased only insulin secretion in the HFD-induced obese mice. MPE substantially increased the ß-cell area in both models (3-fold and 2-fold, p < 0.01, for db/db and HFD mice, respectively). We observed reduced nuclear translocation of the p65 subunit of NF-κB in islets of MPE-treated db/db mice, coinciding with enhanced glucose-stimulated insulin secretion (GSIS). In vitro, MPE potentiated GSIS and decreased interleukin 1ß (IL-1ß) secretion in MIN6 ß-cells. Incubation of MIN6 cells with tumor necrosis factor α (TNFα), interferon-γ, and IL-1ß amplified IL-1ß secretion and inhibited GSIS. These effects were partially reversed with MPE or the IκB kinase ß inhibitor PS1145, coinciding with reduced activation of p65 and p-IκB in the NF-κB pathway. We conclude that MPE may have potential for therapeutic development for ß-cell protection.


Assuntos
Quinase I-kappa B/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/metabolismo , Obesidade/metabolismo , Ophiopogon/química , Extratos Vegetais , Tubérculos/genética , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Células Secretoras de Insulina/patologia , Camundongos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Obesidade/patologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
11.
FASEB J ; 34(2): 3367-3378, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31919912

RESUMO

Ppardδ, one of the lipid-activated nuclear receptor expressed in many cell types to activate gene transcription, also regulates cellular functions other than lipid metabolism. The mechanism regulating the function of antigen-presenting cells during the development of atherosclerosis is not fully understood. Here we aimed to study the involvement of PPARδ in CD11c+ cells in atherosclerosis. We used the Cre-loxP approach to make conditional deletion of Ppard in CD11c+ cells in mice on Apoe-/- background, which were fed with high cholesterol diet to develop atherosclerosis. Ppard deficiency in CD11c+ cells attenuated atherosclerotic plaque formation and infiltration of myeloid-derived dendritic cells (DCs) and T lymphocytes. Reduced lesion was accompanied by reduced activation of dendritic cells, and also a reduction of activation and differentiation of T cells to Th1 cells. In addition, DC migration to lymph node was also attenuated with Ppard deletion. In bone marrow-derived DCs, Ppard deficiency reduced palmitic acid-induced upregulation of co-stimulatory molecules and pro-inflammatory cytokine IL12 and TNFα. Our results indicated PPARδ activation by fatty acid resulted in the activation of myeloid DCs and subsequent polarization of T lymphocytes, which contributed to atherosclerosis in Apoe-/- mice. These findings also reveal the potential regulatory role of PPARδ in antigen presentation to orchestrate the immune responses during atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Células Dendríticas/metabolismo , Deleção de Genes , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Antígenos CD11/genética , Antígenos CD11/metabolismo , Células Cultivadas , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Pharmacol Res ; 169: 105681, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34019979

RESUMO

Reports of the beneficial roles of butyrate in cardiovascular diseases, such as atherosclerosis and ischemic stroke, are becoming increasingly abundant. However, the mechanisms of its bioactivities remain largely unknown. In this study, we explored the effects of butyrate on endothelial dysfunction and its potential underlying mechanism. In our study, ApoE-/- mice were fed with high-fat diet (HFD) for ten weeks to produce atherosclerosis models and concurrently treated with or without sodium butyrate daily. Thoracic aortas were subsequently isolated from C57BL/6 wild-type (WT), PPARδ-/-, endothelial-specific PPARδ wild-type (EC-specific PPARδ WT) and endothelial-specific PPARδ knockout (EC-specific PPARδ KO) mice were stimulated with interleukin (IL)-1ß with or without butyrate ex vivo. Our results demonstrated that butyrate treatment rescued the impaired endothelium-dependent relaxations (EDRs) in thoracic aortas of HFD-fed ApoE-/- mice. Butyrate also rescued impaired EDRs in IL-1ß-treated thoracic aorta ring ex vivo. Global and endothelial-specific knockout of PPARδ eliminated the protective effects of butyrate against IL-1ß-induced impairment to EDRs. Butyrate abolished IL-1ß-induced reactive oxygen species (ROS) production in endothelial cells while the inhibitory effect was incapacitated by genetic deletion of PPARδ or pharmacological inhibition of PPARδ. IL-1ß increased NADPH oxidase 2 (NOX2) mRNA and protein expressions in endothelial cells, which were prevented by butyrate treatment, and the effects of butyrate were blunted following pharmacological inhibition of PPARδ. Importantly, butyrate treatment upregulated the miR-181b expression in atherosclerotic aortas and IL-1ß-treated endothelial cells. Moreover, transfection of endothelial cells with miR-181b inhibitor abolished the suppressive effects of butyrate on NOX2 expressions and ROS generation in endothelial cells. To conclude, butyrate prevents endothelial dysfunction in atherosclerosis by reducing endothelial NOX2 expression and ROS production via the PPARδ/miR-181b pathway.


Assuntos
Butiratos/farmacologia , Endotélio Vascular/efeitos dos fármacos , MicroRNAs/metabolismo , PPAR gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Dieta Hiperlipídica , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Relaxamento Muscular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
Acta Pharmacol Sin ; 42(10): 1598-1609, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33495519

RESUMO

Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases and increases mortality in type 2 diabetic patients. HHcy induces endoplasmic reticulum (ER) stress and oxidative stress to impair endothelial function. The glucagon-like peptide 1 (GLP-1) analog exendin-4 attenuates endothelial ER stress, but the detailed vasoprotective mechanism remains elusive. The present study investigated the beneficial effects of exendin-4 against HHcy-induced endothelial dysfunction. Exendin-4 pretreatment reversed homocysteine-induced impairment of endothelium-dependent relaxations in C57BL/6 mouse aortae ex vivo. Four weeks subcutaneous injection of exendin-4 restored the impaired endothelial function in both aortae and mesenteric arteries isolated from mice with diet-induced HHcy. Exendin-4 treatment lowered superoxide anion accumulation in the mouse aortae both ex vivo and in vivo. Exendin-4 decreased the expression of ER stress markers (e.g., ATF4, spliced XBP1, and phosphorylated eIF2α) in human umbilical vein endothelial cells (HUVECs), and this change was reversed by cotreatment with compound C (CC) (AMPK inhibitor). Exendin-4 induced phosphorylation of AMPK and endothelial nitric oxide synthase in HUVECs and arteries. Exendin-4 increased the expression of endoplasmic reticulum oxidoreductase (ERO1α), an important ER chaperone in endothelial cells, and this effect was mediated by AMPK activation. Experiments using siRNA-mediated knockdown or adenoviral overexpression revealed that ERO1α mediated the inhibitory effects of exendin-4 on ER stress and superoxide anion production, thus ameliorating HHcy-induced endothelial dysfunction. The present results demonstrate that exendin-4 reduces HHcy-induced ER stress and improves endothelial function through AMPK-dependent ERO1α upregulation in endothelial cells and arteries. AMPK activation promotes the protein folding machinery in endothelial cells to suppress ER stress.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Exenatida/farmacologia , Homocisteína/efeitos adversos , Dobramento de Proteína/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
J Sports Sci ; 39(12): 1376-1385, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33460358

RESUMO

This study aimed to examine the effects of 3-min light-intensity walking every 30 min (3-min) and 6-min light-intensity walking every 60 min (6-min) compared with prolonged sitting (SIT) on the postprandial metabolic responses in young, centrally obese, Chinese men. Twenty-one Chinese men with central obesity (age, 23 ± 4 years; body mass index, 29.8 ± 3.2 kg·m-2; waist circumference, 98.7 ± 7.1 cm; mean ± SD) underwent three 6-h experiments with a 7-day washout period, SIT, 3-min, and 6-min, in randomized order. Compared with SIT, neither walking condition showed differences in total and net incremental area under the curve (tAUC and iAUC, respectively) for glucose, insulin, nor non-esterified fatty acids. The tAUC and iAUC for triglycerides for the SIT condition (10.8 [9.3, 12.2] and 4.4 [3.7, 5.1] mmol·h·L-1, respectively; mean [95% confidence interval]) was higher than 3-min (10.4 [9.0, 11.8] and 3.8 [3.3, 4.3] mmol·h·L-1, respectively, both Ps <0.05) and 6-min (9.6 [8.1, 11.0] and 3.5 [2.9, 4.2] mmol·h·L-1, respectively, both Ps <0.01) conditions. Interrupting prolonged sitting regardless of frequency-reduced postprandial triglycerides. A higher volume of physical activity may be required to obtain greater glycaemic benefits in young Chinese men with central obesity.


Assuntos
Terapia por Exercício/métodos , Obesidade Abdominal/sangue , Obesidade Abdominal/terapia , Comportamento Sedentário , Postura Sentada , Caminhada , Adulto , Área Sob a Curva , Glicemia/metabolismo , China , Estudos Cross-Over , Ácidos Graxos não Esterificados/metabolismo , Humanos , Insulina/sangue , Masculino , Período Pós-Prandial , Fatores de Tempo , Triglicerídeos/sangue , Adulto Jovem
15.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673430

RESUMO

To discover new compounds with broad spectrum and high activity, we designed a series of novel benzamides containing 1,2,4-oxadiazole moiety by bioisosterism, and 28 benzamides derivatives with antifungal activity were synthesized. These compounds were evaluated against four fungi: Botrytis cinereal, FusaHum graminearum, Marssonina mali, and Thanatephorus cucumeris. The results indicated that most of the compounds displayed good fungicidal activities, especially against Botrytis cinereal. For example, 10a (84.4%), 10d (83.6%), 10e (83.3%), 10f (83.1%), 10i (83.3%), and 10l (83.6%) were better than pyraclostrobin (81.4%) at 100 mg/L. In addition, the acute toxicity of 10f to zebrafish embryo was 20.58 mg/L, which was classified as a low-toxicity compound.


Assuntos
Antifúngicos/farmacologia , Benzamidas/farmacologia , Oxidiazóis/farmacologia , Peixe-Zebra/microbiologia , Animais , Ascomicetos/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Benzamidas/síntese química , Benzamidas/química , Benzamidas/toxicidade , Botrytis/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/microbiologia , Fusarium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oxidiazóis/síntese química , Oxidiazóis/química , Oxidiazóis/toxicidade , Peixe-Zebra/embriologia
16.
Molecules ; 26(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202103

RESUMO

Eight novel pyridyl-oxazole carboxamides were evaluated against fungi and displayed good fungicidal activities against Botrytis cinereal and Rhizoctonia solani. Preliminary bioassay results indicated that at 100 mg/L, compounds 6a-6e, 6g and 6h exhibited 100% fungicidal activities against Botrytis cinerea, and the compound 6b to Rhizoctonia solani at 100%. Then, the zebrafish embryo acute toxicity test was performed to assess the toxicity of 6b and 6c. A series of malformations appeared, when the zebrafish embryos were exposed to 6b and 6c, such as delayed yolk sac resorption, significant shortening of body length, pericardial edema, bending spine, lack of melanin, heart hemorrhage, head hemorrhage, delayed swim sac development, yolk malformation and head malformation. In addition, the acute toxicity of 6b to zebrafish embryo is 4.878 mg/L, and 6c is 6.257 mg/L.


Assuntos
Antifúngicos , Botrytis/crescimento & desenvolvimento , Embrião não Mamífero/embriologia , Imidazóis , Rhizoctonia/crescimento & desenvolvimento , Peixe-Zebra/embriologia , Animais , Antifúngicos/efeitos adversos , Antifúngicos/química , Antifúngicos/farmacologia , Imidazóis/efeitos adversos , Imidazóis/química , Imidazóis/farmacologia
17.
J Sci Food Agric ; 101(7): 2727-2735, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33124042

RESUMO

BACKGROUND: Various spectral profiles, including reflectance, absorbance, and Kubelka-Munk spectra, have been derived from hyperspectral images and used to develop multivariate models to evaluate changes in the quality of meat and meat products as a function of processing. However, none of these has the capacity to produce images of the structural changes often associated with processing. This study explored the feasibility of combining hyperspectral imaging (HSI) with confocal laser scanning microscopy (CLSM) to examine the impact of processing on microstructural changes and the evolution of moisture. Reflectance spectra features were obtained and transformed into absorbance and Kubelka-Munk spectra and their ability to predict moisture content using models established on partial least-squares regression were evaluated. RESULTS: The partial least-squares regression model (full-band wavelength) dubbed Rs-MSC yielded the best result, with R c 2 = 0.967 , RMSEC = 0.127, R cv 2 = 0.949 , RMSECV = 0.418, R p 2 = 0.937 , RMSEP = 0.824. Next, a total of 16 optimum wavelengths were selected using the competitive adaptive reweighted sampling algorithm. These wavelengths also yielded good results for Rs-MSC, with R c 2 = 0.958 , RMSEC = 0.840, R cv 2 = 0.931 , RMSECV = 0.118, R p 2 = 0.926 , RMSEP = 0.121. Regarding moisture distribution and microstructure analysis, HSI and CLSM were able to reveal moisture content distribution and conformational differences in microstructure in the test samples. CONCLUSION: Using HSI in synergy with CLSM may offer a reliable means for assessing both the chemical and structural changes that occur in other congener food products during processing. © 2020 Society of Chemical Industry.


Assuntos
Imageamento Hiperespectral/métodos , Produtos da Carne/análise , Microscopia Confocal/métodos , Algoritmos , Animais , Qualidade dos Alimentos , Carne de Porco/análise , Suínos
18.
J Sci Food Agric ; 101(14): 5972-5983, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33856705

RESUMO

BACKGROUND: Food processing induces various modifications that affect the structure, physical and chemical properties of food products and hence the acceptance of the product by the consumer. In this work, the evolution of volatile components, 2-thiobarbituric acid reactive substances (TBARS), moisture content (MC) and microstructural changes of pork was investigated by hyperspectral (HSI) and confocal imaging (CLSM) techniques in synergy with gas chromatography-ion mobility spectrometry (GC-IMS). Models based on partial least squares regression (PLSR) were developed using the full HSI spectrum variables as well as optimum variables selected through a competitive adaptive reweighted sampling algorithm. RESULTS: Prediction results for MC and TBARS using multiplicative scatter correction pre-processed spectra models demonstrated greater efficiency and predictability with determination coefficient of prediction of 0.928, 0.930 and root mean square error of prediction of 0.114, 1.002, respectively. Major structural changes were also observed during CLSM imaging, which were greatly pronounced in pork samples oven cooked for 15 and 20 h. These structural changes could be related to the denaturation of the major meat components, which could explain the loss of moisture and the formation of TBARS visualized from the HSI chemical distribution maps. GC-IMS identified 35 volatile components, including hexanal and pentanal, which are also known to have a higher lipid oxidation specificity. CONCLUSION: The synergistic application of HSI, CLSM and GC-IMS enhanced data mining and interpretation and provided a convenient way for analyzing the chemical, structural and volatile changes occurring in meat during processing. © 2021 Society of Chemical Industry.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Imageamento Hiperespectral/métodos , Espectrometria de Mobilidade Iônica/métodos , Produtos da Carne/análise , Carne de Porco/análise , Animais , Análise de Alimentos , Manipulação de Alimentos , Controle de Qualidade , Suínos , Substâncias Reativas com Ácido Tiobarbitúrico/análise
19.
Arterioscler Thromb Vasc Biol ; 39(4): 719-730, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30816805

RESUMO

Objective- TFEB (transcription factor EB) was recently reported to be induced by atheroprotective laminar flow and play an anti-atherosclerotic role by inhibiting inflammation in endothelial cells (ECs). This study aims to investigate whether TFEB regulates endothelial inflammation in diabetic db/db mice and the molecular mechanisms involved. Approach and Results- Endothelial denudation shows that TFEB is mainly expressed in ECs in mouse aortas. Western blotting shows TFEB total protein level decreases whereas the p-TFEB S142 (phosphorylated form of TFEB) increases in db/db mouse aortas, suggesting a decreased TFEB activity. Adenoviral TFEB overexpression reduces endothelial inflammation as evidenced by decreased expression of vascular inflammatory markers in db/db mouse aortas, and reduced expression of a wide range of adhesion molecules and chemokines in human umbilical vein ECs. Monocyte attachment assay shows TFEB suppresses monocyte adhesion to human umbilical vein ECs. RNA sequencing of TFEB-overexpressed human umbilical vein ECs suggested TFEB inhibits NF-κB (nuclear factor-kappa B) signaling. Indeed, luciferase assay shows TFEB suppresses NF-κB transcriptional activity. Mechanistically, TFEB suppresses IKK (IκB kinase) activity to protect IκB-α from degradation, leading to reduced p65 nuclear translocation. Inhibition of IKK by PS-1145 abolished TFEB silencing-induced inflammation in human umbilical vein ECs. Lastly, we identified KLF2 (Krüppel-like factor 2) upregulates TFEB expression and promoter activity. Laminar flow experiment showed that KLF2 is required for TFEB induction by laminar flow and TFEB is an anti-inflammatory effector downstream of laminar flow-KLF2 signaling in ECs. Conclusions- These findings suggest that TFEB exerts anti-inflammatory effects in diabetic mice and such function in ECs is achieved by inhibiting IKK activity and increasing IκBα level to suppress NF-κB activity. KLF2 mediates TFEB upregulation in response to laminar flow.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Angiopatias Diabéticas/prevenção & controle , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/fisiologia , Quinase I-kappa B/fisiologia , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/fisiologia , Animais , Aorta/metabolismo , Adesão Celular , Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Fatores de Transcrição Kruppel-Like/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Condicionamento Físico Animal , Receptores para Leptina/deficiência , Proteínas Recombinantes/metabolismo , Transcrição Gênica
20.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878297

RESUMO

Macrophage is one of the important players in immune response which perform many different functions during tissue injury, repair, and regeneration. Studies using animal models of cardiovascular diseases have provided a clear picture describing the effect of macrophages and their phenotype during injury and regeneration of various vascular beds. Many data have been generated to demonstrate that macrophages secrete many important factors including cytokines and growth factors to regulate angiogenesis and arteriogenesis, acting directly or indirectly on the vascular cells. Different subsets of macrophages may participate at different stages of vascular repair. Recent findings also suggest a direct interaction between macrophages and other cell types during the generation and repair of vasculature. In this short review, we focused our discussion on how macrophages adapt to the surrounding microenvironment and their potential interaction with other cells, in the context of vascular repair supported by evidences mostly from studies using hindlimb ischemia as a model for studying post-ischemic vascular repair.


Assuntos
Isquemia/complicações , Macrófagos/citologia , Neovascularização Patológica/terapia , Regeneração , Engenharia Tecidual , Animais , Humanos , Neovascularização Patológica/etiologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa