Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 124: 104614, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244366

RESUMO

Salmonella is a major bacterial concern for public health globally. Although there are limited documentation on the prevalence of Salmonella species in Cambodia's food chain, some reports indicate that salmonellosis is a severe gastrointestinal infection in its population and especially in children. To investigate the presence of Salmonella spp., 285 food samples (75 meat, 50 seafood, and 160 leafy green vegetable samples) were randomly collected from various local markets in Phnom Penh capital and nearby farms in Cambodia. Concurrently, field observations were conducted to collect data on food hygiene and practices among the relevant actors. All food samples were analyzed using bacterial culture and plate counts, and the findings were confirmed serially with biochemical, serological, and PCR tests. The observational data on food hygiene and practices from farm to market revealed that the spread of Salmonella in the food-value chain from farm to market could pose health risks to consumers. The overall prevalence of Salmonella spp. was 48.4% (138/285), while the prevalence in meat, seafood, and vegetables was 71% (53/75), 64% (32/50), and 33% (53/160), respectively. Mean Salmonella plate count ranged from 1.2 to 7.40 log10 CFU/g, and there was no significant difference in bacterial counts between meat, seafood, and vegetable samples (p > 0.05). The most common serogroups among the isolated Salmonella spp. were B and C. These results suggest that a large proportion of meat, seafood, and vegetable products sold at local markets in Phnom Penh are contaminated with Salmonella spp. This is likely linked to inadequate hygiene and sanitation practices, including handling, storage, and preservation conditions. Observations on farms suggested that the prevalence of Salmonella in vegetables sold at the market could be linked to contamination relating to agricultural practices. Thus, controlling the spread of foodborne salmonellosis through the food-value chain from farms and retailers to consumers is warranted to enhance food safety in Cambodia.


Assuntos
Fazendas , Contaminação de Alimentos , Carne , Salmonella , Alimentos Marinhos , Verduras , Camboja/epidemiologia , Verduras/microbiologia , Salmonella/isolamento & purificação , Salmonella/classificação , Contaminação de Alimentos/análise , Contaminação de Alimentos/estatística & dados numéricos , Prevalência , Alimentos Marinhos/microbiologia , Carne/microbiologia , Animais , Microbiologia de Alimentos , Humanos , Higiene
2.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727359

RESUMO

A mixed metal oxide W-TiO2 nanopowder photocatalyst was prepared by using the sol-gel method with a broad range of elemental compositions x = CW/(CW + CTi), including TiO2 and WO3. The material was structurally characterized and evaluated in adsorption and photocatalytic processes by testing its removal capacity of a representative pollutant methylene blue (MB) in aqueous solutions and under UV-A and sunlight illuminations. The nanopowders appeared to be more effective adsorbents than pure TiO2 and WO3 materials, showing a maximum at 15 mol% W, which was set as the tungsten solubility limit in anatase titania. At the same time, the photocatalytic decomposition of MB peaked at 2 mol% W. The examination of different compositions showed that the most effective MB removal took place at 15 mol% W, which was attributed to the combined action of adsorption and heterogeneous photocatalysis. Moreover, MB decomposition under sunlight was stronger than under UV-A, suggesting photocatalyst activation by visible light. The pollutant removal efficiency of the material with 15 mol% W was enhanced by a factor of ~10 compared to pure TiO2 at the beginning of the process, which shows its high potential for use in depollution processes in emergency cases of a great pollutant leak. As a result, a Wx=0.15-TiO2 catalyst could be of high interest for wastewater purification in industrial plants.

3.
Nanoscale ; 3(4): 1807-12, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21399793

RESUMO

We report on a new approach to the fabrication of an electronic material: organic-inorganic pHEMA-oxo-TiO(2) hybrid with efficient light-induced separation of charges. Particular attention is paid to the material nanoscale morphology. The size-selected 5.0 nm titanium oxo-alkoxy nanoparticles are prepared in a sol-gel reactor with rapid (turbulent) fluid micromixing and the ligand exchange results in a stable nanoparticulate precursor in HEMA solution, in which polymerization can be induced thermally or by photons. The obtained hybrid materials demonstrate the highest quantum yield of photoinduced charge separation of 50% and can store photoinduced electrons at a number density above 10% Ti atoms.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Poli-Hidroxietil Metacrilato/química , Titânio/química , Elétrons , Luz , Teste de Materiais , Nanoestruturas/efeitos da radiação , Fótons , Eletricidade Estática , Titânio/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa