Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(6): 2009-2020, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30523156

RESUMO

Hepatic insulin resistance in the setting of steatosis is attributable at least in part to the accumulation of bioactive lipids that suppress insulin signaling. The mitochondria-associated glycerol-3-phosphate acyltransferase 1 (GPAT1) catalyzes the first committed step in glycerolipid synthesis, and its activity diverts fatty acids from mitochondrial ß-oxidation. GPAT1 overexpression in mouse liver leads to hepatic steatosis even in the absence of overnutrition. The mice develop insulin resistance owing to the generation of saturated diacylglycerol and phosphatidic acid molecular species that reduce insulin signaling by activating PKCϵ and by suppressing mTORC2, respectively. Them2, a mitochondria-associated acyl-CoA thioesterase, also participates in the trafficking of fatty acids into oxidative versus glycerolipid biosynthetic pathways. Them2-/- mice are protected against diet-induced hepatic steatosis and insulin resistance. To determine whether Them2 contributes to hepatic insulin resistance due to hepatic overexpression of GPAT1, recombinant adenovirus was used to overexpress GPAT1 in livers of chow-fed Them2+/+ and Them2-/- mice. Hepatic GPAT1 overexpression led to steatosis in both genotypes. In the setting of GPAT1 overexpression, glucose tolerance was reduced in Them2+/+ but not Them2-/- mice, without influencing whole-body insulin sensitivity or basal hepatic glucose production. Improved glucose tolerance in Them2-/- mice was associated with reduced PKCϵ translocation. Preserved insulin receptor activity was supported by Thr-308 phosphorylation of Akt following GPAT1 overexpression in Them2-/- hepatocytes. These findings suggest a pathogenic role of Them2 in the biosynthesis of glycerolipid metabolites that promote hepatic insulin resistance.


Assuntos
Fígado Gorduroso/complicações , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Resistência à Insulina , Tioléster Hidrolases/farmacologia , Animais , Ácidos Graxos/metabolismo , Fígado Gorduroso/induzido quimicamente , Glicerídeos/biossíntese , Hepatócitos/metabolismo , Hepatopatias , Camundongos , Proteína Quinase C-épsilon/metabolismo , Tioléster Hidrolases/genética
2.
Cell Mol Life Sci ; 71(5): 933-48, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23864032

RESUMO

Acyl-CoA thioesterase (ACOT) activities are found in prokaryotes and in several compartments of eukaryotes where they hydrolyze a wide range of acyl-CoA substrates and thereby regulate intracellular acyl-CoA/CoA/fatty acid levels. ACOT9 is a mitochondrial ACOT with homologous genes found from bacteria to humans and in this study we have carried out an in-depth kinetic characterization of ACOT9 to determine its possible physiological function. ACOT9 showed unusual kinetic properties with activity peaks for short-, medium-, and saturated long-chain acyl-CoAs with highest V max with propionyl-CoA and (iso) butyryl-CoA while K cat/K m was highest with saturated long-chain acyl-CoAs. Further characterization of the short-chain acyl-CoA activity revealed that ACOT9 also hydrolyzes a number of short-chain acyl-CoAs and short-chain methyl-branched CoA esters that suggest a role for ACOT9 in regulation also of amino acid metabolism. In spite of markedly different K ms, ACOT9 can hydrolyze both short- and long-chain acyl-CoAs simultaneously, indicating that ACOT9 may provide a novel regulatory link between fatty acid and amino acid metabolism in mitochondria. Based on similar acyl-CoA chain-length specificities of recombinant ACOT9 and ACOT activity in mouse brown adipose tissue and kidney mitochondria, we conclude that ACOT9 is the major mitochondrial ACOT hydrolyzing saturated C2-C20-CoA in these tissues. Finally, ACOT9 activity is strongly regulated by NADH and CoA, suggesting that mitochondrial metabolic state regulates the function of ACOT9.


Assuntos
Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Animais , Sequência de Bases , Western Blotting , Cromatografia Líquida de Alta Pressão , Mapeamento Cromossômico , Clonagem Molecular , Análise por Conglomerados , Biologia Computacional , Primers do DNA/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Espectrofotometria
3.
Lipids Health Dis ; 14: 88, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26260413

RESUMO

BACKGROUND: Marine food is an important source of omega-3 fatty acids with beneficial health effects. Oils from marine organisms have different fatty acid composition and differ in their molecular composition. Fish oil (FO) has a high content of eicosapentaenoic and docosahexaenoic acids mainly esterified to triacylglycerols, while in krill oil (KO) these fatty acids are mainly esterified to phospholipids. The aim was to study the effects of these oils on the lipid content and fatty acid distribution in the various lipid classes in liver and brain of mice. METHODS: Mice were fed either a high-fat diet (HF), a HF diet supplemented with FO or with KO (n = 6). After six weeks of feeding, liver and brain lipid extracts were analysed using a shotgun and TAG lipidomics approach. Student t-test was performed after log-transformation to compare differences between study groups. RESULTS: Six weeks of feeding resulted in significant changes in the relative abundance of many lipid classes compared to control mice. In both FO and KO fed mice, the triacylglycerol content in the liver was more than doubled. The fatty acid distribution was affected by the oils in both liver and brain with a decrease in the abundance of 18:2 and 20:4, and an increase in 20:5 and 22:6 in both study groups. 18:2 decreased in all lipid classes in the FO group but with only minor changes in the KO group. Differences between the feeding groups were particularly evident in some of the minor lipid classes that are associated with inflammation and insulin resistance. Ceramides and diacylglycerols were decreased and cholesteryl esters increased in the liver of the KO group, while plasmalogens were decreased in the FO group. In the brain, diacylglycerols were decreased, more by KO than FO, while ceramides and lactosylceramides were increased, more by FO than KO. CONCLUSION: The changes in the hepatic sphingolipids and 20:4 fatty acid levels were greater in the KO compared to the FO fed mice, and are consistent with a hypothesis that krill oil will have a stronger anti-inflammatory action and enhances insulin sensitivity more potently than fish oil.


Assuntos
Encéfalo/metabolismo , Euphausiacea/química , Comportamento Alimentar , Óleos de Peixe/farmacologia , Lipídeos/química , Fígado/metabolismo , Metaboloma/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fígado/efeitos dos fármacos , Camundongos
4.
Nutrition ; 110: 111982, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36940624

RESUMO

OBJECTIVES: Dietary composition may affect body composition during weight loss therapy. We tested the hypothesis of whether dietary macronutrient composition influences the reduction of total abdominal adipose tissue, subcutaneous adipose tissue (SAT), or visceral adipose tissue (VAT) during weight loss. METHODS: Dietary macronutrient composition and body composition were analyzed as a secondary outcome of a randomized controlled trial of 62 participants with non-alcoholic fatty liver disease. Patients were randomly assigned to a calorie-restricted intermittent fasting (5:2), calorie-restricted low-carbohydrate high-fat (LCHF), or healthy lifestyle advice (standard-of-care) diet in a 12-wk intervention phase. Dietary intake was assessed by self-reported 3-d food diaries and by characterization of total plasma fatty acid profile. Percentage of energy intake (E%) from different macronutrients was calculated. Body composition was assessed by magnetic resonance imaging and anthropometric measurements. RESULTS: The macronutrient composition differed significantly between the 5:2 (fat 36 E% and carbohydrates 43 E%) and the LCHF (fat 69 E% and carbohydrates 9 E%) groups (P < 0.001). Weight loss was similar in the 5:2 and LCHF groups (-7.2 [SD = 3.4] kg versus 8.0 [SD = 4.8] kg; P = 0.44) and significantly larger than for standard of care (-2.5 kg [SD = 2.3]; P < 0.001). The volume of total abdominal fat, adjusted for height, decreased on average by 4.7% (standard of care), 14.3% (5:2), and 17.7% (LCHF), with no significant differences between the 5:2 and LHCF groups (P = 0.32). VAT and SAT, adjusted for height, decreased on average by 17.1% and 12.7% for 5:2, respectively, and by 21.2% and 17.9% for LCHF, with no significant group differences (VAT [P = 0.16] and SAT [P = 0.10]). VAT was mobilized to a greater extent than SAT in all diets. CONCLUSIONS: The 5:2 and LCHF diets had similar effects on changes in intraabdominal fat mass and anthropometrics during weight loss. This might indicate that overall weight loss is more important than diet composition to achieve changes in total abdominal adipose tissue, VAT, or SAT. The results of the present study suggest that there is a need for further studies on the effect of diet composition on body composition changes during weight loss therapy.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Composição Corporal , Redução de Peso , Dieta com Restrição de Gorduras , Nutrientes , Carboidratos
5.
Nutrients ; 14(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558523

RESUMO

Rest raw materials provide a new source of bioactive dietary ingredients, and this study aimed to determine the health effects of diets with chicken protein hydrolysate (CPH) and chicken oil (CO) generated from deboned chicken meat. Male Wistar rats (n = 56) were divided into seven groups in three predefined sub-experiments to study the effects of protein source (casein, chicken fillet, pork fillet, and CPH), the dose-effect of CPH (50% and 100% CPH), and the effects of combining CPH and CO. Rats were fed high-fat diets for 12 weeks, and casein and chicken fillet were used as controls in all sub-experiments. While casein, chicken-, or pork fillet diets resulted in similar weight gain and plasma lipid levels, the CPH diet reduced plasma total cholesterol. This effect was dose dependent and accompanied with the reduced hepatic activities of acetyl-CoA carboxylase and fatty acid synthase. Further, rats fed combined CPH and CO showed lower weight gain, and higher hepatic mitochondrial fatty acid oxidation, plasma L-carnitine, short-chain acylcarnitines, TMAO, and acetylcarnitine/palmitoylcarnitine. Thus, in male Wistar rats, CPH and CO lowered plasma cholesterol and increased hepatic fatty acid oxidation compared to whole protein diets, pointing to potential health-beneficial bioactive properties of these processed chicken rest raw materials.


Assuntos
Galinhas , Hidrolisados de Proteína , Ratos , Masculino , Animais , Ratos Wistar , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Galinhas/metabolismo , Caseínas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Aumento de Peso , Colesterol , Ácidos Graxos/metabolismo , Tecido Adiposo/metabolismo , Gorduras na Dieta/metabolismo
6.
JHEP Rep ; 3(3): 100256, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33898960

RESUMO

BACKGROUND & AIMS: The first-line treatment for non-alcoholic fatty liver disease (NAFLD) is weight reduction. Several diets have been proposed, with various effects specifically on liver steatosis. This trial compared the effects of intermittent calorie restriction (the 5:2 diet) and a low-carb high-fat diet (LCHF) on reduction of hepatic steatosis. METHODS: We conducted an open-label randomised controlled trial that included 74 patients with NAFLD randomised in a 1:1:1 ratio to 12 weeks' treatment with either a LCHF or 5:2 diet, or general lifestyle advice from a hepatologist (standard of care; SoC). The primary outcome was reduction of hepatic steatosis as measured by magnetic resonance spectroscopy. Secondary outcomes included transient elastography, insulin resistance, blood lipids, and anthropometrics. RESULTS: The LCHF and 5:2 diets were both superior to SoC treatment in reducing steatosis (absolute reduction: LCHF: -7.2% [95% CI = -9.3 to -5.1], 5:2: -6.1% [95% CI = -8.1 to -4.2], SoC: -3.6% [95% CI = -5.8 to -1.5]) and body weight (LCHF: -7.3 kg [95% CI = -9.6 to -5.0]; 5:2: -7.4 kg [95% CI = -8.7 to -6.0]; SoC: -2.5 kg [95% CI =-3.5 to -1.5]. There was no difference between 5:2 and LCHF (p = 0.41 for steatosis and 0.78 for weight). Liver stiffness improved in the 5:2 and SoC but not in the LCHF group. The 5:2 diet was associated with reduced LDL levels and was tolerated to a higher degree than LCHF. CONCLUSIONS: The LCHF and 5:2 diets were more effective in reducing steatosis and body weight in patients with NAFLD than SoC, suggesting dietary advice can be tailored to meet individual preferences. LAY SUMMARY: For a person with obesity who suffers from fatty liver, weight loss through diet can be an effective treatment to improve the condition of the liver. Many popular diets that are recommended for weight reduction, such as high-fat diets and diets based on intermittent fasting, have not had their effects on the liver directly evaluated. This study shows that both a low-carb high-fat and the 5:2 diet are effective in treating fatty liver caused by obesity. CLINICAL TRIALS REGISTRATION: This study is registered at Clinicaltrials.gov (NCT03118310).

7.
PLoS One ; 15(3): e0229322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32176696

RESUMO

Tetradecylthioacetic acid (TTA) is a synthetic fatty acid with a sulfur substitution in the ß-position. This modification renders TTA unable to undergo complete ß-oxidation and increases its biological activity, including activation of peroxisome proliferator activated receptors (PPARs) with preference for PPARα. This study investigated the effects of TTA on lipid and lipoprotein metabolism in the intestine and liver of mice fed a high fat diet (HFD). Mice receiving HFD supplemented with 0.75% (w/w) TTA had significantly lower body weights compared to mice fed the diet without TTA. Plasma triacylglycerol (TAG) was reduced 3-fold with TTA treatment, concurrent with increase in liver TAG. Total cholesterol was unchanged in plasma and liver. However, TTA promoted a shift in the plasma lipoprotein fractions with an increase in larger HDL particles. Histological analysis of the small intestine revealed a reduced size of lipid droplets in enterocytes of TTA treated mice, accompanied by increased mRNA expression of fatty acid transporter genes. Expression of the cholesterol efflux pump Abca1 was induced in the small intestine, but not in the liver. Scd1 displayed markedly increased mRNA and protein expression in the intestine of the TTA group. It is concluded that TTA treatment of HFD fed mice leads to increased expression of genes involved in uptake and transport of fatty acids and HDL cholesterol in the small intestine with concomitant changes in the plasma profile of smaller lipoproteins.


Assuntos
HDL-Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Lipoproteínas/metabolismo , PPAR alfa/agonistas , Sulfetos/administração & dosagem , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Sulfetos/farmacologia , Triglicerídeos/sangue
8.
J Biochem ; 144(5): 655-63, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18799520

RESUMO

Coenzyme A (CoASH) is an obligate cofactor for lipids undergoing beta-oxidation in peroxisomes. Although the peroxisomal membrane appears to be impermeable to CoASH, peroxisomes contain their own pool of CoASH. It is believed that CoASH enters peroxisomes as acyl-CoAs, but it is not known how this pool is regulated. The mouse nudix hydrolase 7 (NUDT7alpha) was previously identified in peroxisomes as a CoA-diphosphatase, and therefore suggested to be involved in regulation of peroxisomal CoASH levels. Here we show that mouse NUDT7alpha mainly acts as an acyl-CoA diphosphatase, with highest activity towards medium-chain acyl-CoAs, and much lower activity with CoASH. Nudt7alpha mRNA is highly expressed in liver, brown adipose tissue and heart, similar to enzymes involved in peroxisomal lipid degradation. Nudt7alpha mRNA is down-regulated by Wy-14,643, a peroxisome proliferator-activated receptor alpha (PPARalpha) ligand, in a PPARalpha-dependent manner in mouse liver. In highly purified peroxisomes, nudix hydrolase activity is highest with C(6)-CoA and is decreased by fibrate treatment. Under certain conditions, such as treatment with peroxisome proliferators or fasting, an increase in peroxisomal CoASH levels has been reported, which is in line with a decreased expression/activity of NUDT7alpha. Taken together these data suggest that NUDT7alpha function is tightly linked to peroxisomal CoASH/acyl-CoA homeostasis.


Assuntos
Coenzima A/metabolismo , Homeostase , Isoenzimas/metabolismo , Peroxissomos/metabolismo , Pirofosfatases/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Tecido Adiposo Marrom/enzimologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Coenzima A/química , Isoenzimas/genética , Fígado/enzimologia , Camundongos , Dados de Sequência Molecular , PPAR gama/metabolismo , Pirofosfatases/genética , Alinhamento de Sequência , Distribuição Tecidual , Nudix Hidrolases
9.
Trends Endocrinol Metab ; 28(7): 473-484, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28385385

RESUMO

The cellular uptake of free fatty acids (FFA) is followed by esterification to coenzyme A (CoA), generating fatty acyl-CoAs that are substrates for oxidation or incorporation into complex lipids. Acyl-CoA thioesterases (ACOTs) constitute a family of enzymes that hydrolyze fatty acyl-CoAs to form FFA and CoA. Although biochemically and biophysically well characterized, the metabolic functions of these enzymes remain incompletely understood. Existing evidence suggests regulatory roles in controlling rates of peroxisomal and mitochondrial fatty acyl-CoA oxidation, as well as in the subcellular trafficking of fatty acids. Emerging data implicate ACOTs in the pathogenesis of metabolic diseases, suggesting that better understanding their pathobiology could reveal unique targets in the management of obesity, diabetes, and nonalcoholic fatty liver disease.


Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Tioléster Hidrolases/fisiologia , Animais , Humanos , Metabolismo dos Lipídeos/genética , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo
10.
J Steroid Biochem Mol Biol ; 169: 10-21, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26851362

RESUMO

27-Hydroxycholesterol (27OH) is a strong suppressor of cholesterol synthesis and a weak activator of LXR in vitro. The regulatory importance of 27OH in vivo is controversial. Here we utilized male mice with increased levels of 27OH either due to increased production (CYP27A1 transgenic mice) or reduced metabolism (Cyp7b1-/- mice). We also used mice lacking 27OH due to a knockout of Cyp27a1. The latter mice were treated with cholic acid to compensate for reduced bile acid synthesis. The effects of the different levels of 27OH on Srebp- and other LXR-regulated genes in the liver were investigated. In the liver of CYP27tg mice we found a modest increase of the mRNA levels corresponding to the LXR target genes Cyp7b1 and Abca1. A number of other LXR-regulated genes were not affected. The effect on Abca1 mRNA was not seen in the liver of Cyp7b1-/- mice. There were little or no effects on cholesterol synthesis. In the liver of the Cyp27-/- mice treated with 0.025% cholic acid there was no significant effect of the knockout on the LXR target genes. In a previous work triple-knockout mice deficient in the biosynthesis of 24S-hydroxycholesterol, 25-hydroxycholesterol and 27OH were shown to have impaired response to dietary cholesterol, suggesting side-chain oxidized oxysterols to be mediators in cholesterol-induced effects on LXR target genes at a transcriptional level (Chen W. et al., Cell Metab. 5 (2007) 73-79). The hydroxylated oxysterol responsible for the effect was not defined. We show here that treatment of wildtype mice with dietary cholesterol under the same conditions as in the above study induced the LXR target genes Lpl, Abcg8 and Srebp1c in wild type mice but failed to activate the same genes in mice lacking 27-hydroxycholesterol due to a knockout of Cyp27. We failed to demonstrate the above effects at the protein level (Abcg8) or at the activity level (Lpl). The results suggest that 27OH is not an important regulator of Srebp- or LXR regulated genes under basal conditions in mouse liver. On the other hand 27OH appears to mediate cholesterol-induced effects on some LXR target genes at a transcriptional level under some in vivo conditions.


Assuntos
Hidroxicolesteróis/metabolismo , Fígado/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Colestanotriol 26-Mono-Oxigenase/genética , Família 7 do Citocromo P450/genética , Perfilação da Expressão Gênica , Lipase Lipoproteica/metabolismo , Lipoproteínas/metabolismo , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/metabolismo , Esteroide Hidroxilases/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transcrição Gênica
11.
Food Chem ; 183: 101-10, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25863616

RESUMO

This study investigates the effects of salmon peptide fractions, generated using different enzymatic hydrolyzation methods, on hepatic lipid metabolism. Four groups of mice were fed a high-fat diet with 20% casein (control group) or 15% casein and 5% of peptide fractions (treatment groups E1, E2 and E4) for 6weeks. Weight gain was reduced in mice fed E1 and E4-diets compared to control, despite a similar feed intake. Reduced plasma and liver triacylglycerol levels in E1 and E4-mice were linked to reduced fatty acid synthase (FAS) activity and hepatic expression of lipogenic genes. By contrast, plasma and liver lipids increased in the E2 group, concomitant with increased hepatic FAS activity and Δ9 desaturase gene expression. Shotgun lipidomics showed that MUFAs were significantly reduced in the E1 and E4 groups, whereas PUFAs were increased, and the opposite was observed in the E2 group. In conclusion, bioactive peptides with distinctive properties could potentially be isolated from salmon hydrolysates.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos/fisiologia , Hidrolisados de Proteína/efeitos adversos , Salmão/microbiologia , Animais , Masculino , Camundongos
12.
Biochimie ; 98: 45-55, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389458

RESUMO

Peroxisomes are nearly ubiquitous organelles involved in a number of metabolic pathways that vary between organisms and tissues. A common metabolic function in mammals is the partial degradation of various (di)carboxylic acids via α- and ß-oxidation. While only a small number of enzymes catalyze the reactions of ß-oxidation, numerous auxiliary enzymes have been identified to be involved in uptake of fatty acids and cofactors required for ß-oxidation, regulation of ß-oxidation and transport of metabolites across the membrane. These proteins include membrane transporters/channels, acyl-CoA thioesterases, acyl-CoA:amino acid N-acyltransferases, carnitine acyltransferases and nudix hydrolases. Here we review the current view of the role of these auxiliary enzymes in peroxisomal lipid metabolism and propose that they function in concert to provide a means to regulate fatty acid metabolism and transport of products across the peroxisomal membrane.


Assuntos
Acil Coenzima A/metabolismo , Coenzima A/metabolismo , Peroxissomos/metabolismo , Aciltransferases/metabolismo , Animais , Transporte Biológico/fisiologia , Coenzima A-Transferases/metabolismo , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos , Pirofosfatases/metabolismo , Tioléster Hidrolases/metabolismo , Nudix Hidrolases
13.
Nutr Metab (Lond) ; 11: 20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24834104

RESUMO

BACKGROUND: Marine derived oils are rich in long-chain polyunsaturated omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have long been associated with health promoting effects such as reduced plasma lipid levels and anti-inflammatory effects. Krill oil (KO) is a novel marine oil on the market and is also rich in EPA and DHA, but the fatty acids are incorporated mainly into phospholipids (PLs) rather than triacylglycerols (TAG). This study compares the effects of fish oil (FO) and KO on gene regulation that influences plasma and liver lipids in a high fat diet mouse model. METHODS: Male C57BL/6J mice were fed either a high-fat diet (HF) containing 24% (wt/wt) fat (21.3% lard and 2.3% soy oil), or the HF diet supplemented with FO (15.7% lard, 2.3% soy oil and 5.8% FO) or KO (15.6% lard, 2.3% soy oil and 5.7% KO) for 6 weeks. Total levels of cholesterol, TAG, PLs, and fatty acid composition were measured in plasma and liver. Gene regulation was investigated using quantitative PCR in liver and intestinal epithelium. RESULTS: Plasma cholesterol (esterified and unesterified), TAG and PLs were significantly decreased with FO. Analysis of the plasma lipoprotein particles indicated that the lipid lowering effect by FO is at least in part due to decreased very low density lipoprotein (VLDL) content in plasma with subsequent liver lipid accumulation. KO lowered plasma non-esterified fatty acids (NEFA) with a minor effect on fatty acid accumulation in the liver. In spite of a lower omega-3 fatty acid content in the KO supplemented diet, plasma and liver PLs omega-3 levels were similar in the two groups, indicating a higher bioavailability of omega-3 fatty acids from KO. KO more efficiently decreased arachidonic acid and its elongation/desaturation products in plasma and liver. FO mainly increased the expression of several genes involved in fatty acid metabolism, while KO specifically decreased the expression of genes involved in the early steps of isoprenoid/cholesterol and lipid synthesis. CONCLUSIONS: The data show that both FO and KO promote lowering of plasma lipids and regulate lipid homeostasis, but with different efficiency and partially via different mechanisms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa