RESUMO
Nonshivering thermogenesis occurs in brown adipose tissue to generate heat in response to cold ambient temperatures. Thioesterase superfamily member 1 (Them1) is transcriptionally up-regulated in brown adipose tissue upon exposure to the cold and suppresses thermogenesis in order to conserve energy reserves. It hydrolyzes long-chain fatty acyl-CoAs that are derived from lipid droplets, preventing their use as fuel for thermogenesis. In addition to its enzymatic domains, Them1 contains a C-terminal StAR-related lipid transfer (START) domain with unknown ligand or function. By complementary biophysical approaches, we show that the START domain binds to long-chain fatty acids, products of Them1's enzymatic reaction, as well as lysophosphatidylcholine (LPC), lipids shown to activate thermogenesis in brown adipocytes. Certain fatty acids stabilize the START domain and allosterically enhance Them1 catalysis of acyl-CoA, whereas 18:1 LPC destabilizes and inhibits activity, which we verify in cell culture. Additionally, we demonstrate that the START domain functions to localize Them1 near lipid droplets. These findings define the role of the START domain as a lipid sensor that allosterically regulates Them1 activity and spatially localizes it in proximity to the lipid droplet.
Assuntos
Ácidos Graxos/metabolismo , Lisofosfatidilcolinas/metabolismo , Palmitoil-CoA Hidrolase/química , Palmitoil-CoA Hidrolase/metabolismo , Acil Coenzima A/metabolismo , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/metabolismo , Regulação Alostérica , Ácidos Graxos/química , Humanos , Cinética , Gotículas Lipídicas/enzimologia , Gotículas Lipídicas/metabolismo , Lisofosfatidilcolinas/química , Palmitoil-CoA Hidrolase/genética , Domínios ProteicosRESUMO
The human genome contains vast genetic diversity as naturally occurring coding variants, yet the impact of these variants on protein function and physiology is poorly understood. RGS14 is a multifunctional signaling protein that suppresses synaptic plasticity in dendritic spines of hippocampal neurons. RGS14 also is a nucleocytoplasmic shuttling protein, suggesting that balanced nuclear import/export and dendritic spine localization are essential for RGS14 functions. We identified genetic variants L505R (LR) and R507Q (RQ) located within the nuclear export sequence (NES) of human RGS14. Here we report that RGS14 encoding LR or RQ profoundly impacts protein functions in hippocampal neurons. RGS14 membrane localization is regulated by binding Gαi-GDP, whereas RGS14 nuclear export is regulated by Exportin 1 (XPO1). Remarkably, LR and RQ variants disrupt RGS14 binding to Gαi1-GDP and XPO1, nucleocytoplasmic equilibrium, and capacity to inhibit long-term potentiation (LTP). Variant LR accumulates irreversibly in the nucleus, preventing RGS14 binding to Gαi1, localization to dendritic spines, and inhibitory actions on LTP induction, while variant RQ exhibits a mixed phenotype. When introduced into mice by CRISPR/Cas9, RGS14-LR protein expression was detected predominantly in the nuclei of neurons within hippocampus, central amygdala, piriform cortex, and striatum, brain regions associated with learning and synaptic plasticity. Whereas mice completely lacking RGS14 exhibit enhanced spatial learning, mice carrying variant LR exhibit normal spatial learning, suggesting that RGS14 may have distinct functions in the nucleus independent from those in dendrites and spines. These findings show that naturally occurring genetic variants can profoundly alter normal protein function, impacting physiology in unexpected ways.
Assuntos
Núcleo Celular/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Mutação , Neurônios/metabolismo , Proteínas RGS/genética , Animais , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Carioferinas/metabolismo , Camundongos , Plasticidade Neuronal , Transporte Proteico , Proteínas RGS/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Aprendizagem Espacial , Proteína Exportina 1RESUMO
The motor features of Parkinson's disease result from loss of dopaminergic neurons in the substantia nigra with autophagy dysfunction being closely linked to this disease. While a large body of work focusing on protein effectors of autophagy has been reported, regulation of autophagy by lipids has garnered far less attention. Therefore, we sought to identify endogenous lipid molecules that act as signaling mediators of autophagy in differentiated SH-SY5Y cells, a commonly used dopaminergic neuron-like cell model. In order to accomplish this goal, we assessed the role of a fatty acid-binding protein (FABP) family member on autophagy due to its function as an intracellular lipid chaperone. We focused specifically upon FABP5 due to its heightened expression in dopaminergic neurons within the substantia nigra and SH-SY5Y cells. Here, we report that knockdown of FABP5 resulted in suppression of autophagy in differentiated SH-SY5Y cells suggesting the possibility of an autophagic role for an interacting lipid. A lipidomic screen of FABP5-interacting lipids uncovered hits that include 5-oxo-eicosatetraenoic acid (5OE) and its precursor metabolite, arachidonic acid (AA). Additionally, other long-chain fatty acids were found to bind FABP5, such as stearic acid (SA), hydroxystearic acid (HSA), and palmitic acid (PA). The addition of 5OE, SA, and HSA but not AA or PA, led to potent inhibition of autophagy in SH-SY5Y cells. To identify potential molecular mechanisms for autophagy inhibition by these lipids, RNA-Seq was performed which revealed both shared and divergent signaling pathways between the lipid-treated groups. These findings suggest a role for these lipids in modulating autophagy through diverse signaling pathways and could represent novel therapeutic targets for Parkinson's disease.
Assuntos
Autofagia , Proteínas de Ligação a Ácido Graxo , Humanos , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Linhagem Celular Tumoral , Diferenciação Celular , Neurônios Dopaminérgicos/metabolismo , Transdução de SinaisRESUMO
Phosphatidylcholine transfer protein (PC-TP; synonym StarD2) is a soluble lipid-binding protein that transports phosphatidylcholine (PC) between cellular membranes. To better understand the protective metabolic effects associated with hepatic PC-TP, we generated a hepatocyte-specific PC-TP knockdown (L-Pctp-/-) in male mice, which gains less weight and accumulates less liver fat compared to wild-type mice when challenged with a high-fat diet. Hepatic deletion of PC-TP also reduced adipose tissue mass and decreases levels of triglycerides and phospholipids in skeletal muscle, liver and plasma. Gene expression analysis suggest that the observed metabolic changes are related to transcriptional activity of peroxisome proliferative activating receptor (PPAR) family members. An in-cell protein complementation screen between lipid transfer proteins and PPARs uncovered a direct interaction between PC-TP and PPARδ that was not observed for other PPARs. We confirmed the PC-TP- PPARδ interaction in Huh7 hepatocytes, where it was found to repress PPARδ-mediated transactivation. Mutations of PC-TP residues implicated in PC binding and transfer reduce the PC-TP-PPARδ interaction and relieve PC-TP-mediated PPARδ repression. Reduction of exogenously supplied methionine and choline reduces the interaction while serum starvation enhances the interaction in cultured hepatocytes. Together our data points to a ligand sensitive PC-TP- PPARδ interaction that suppresses PPAR activity.
Assuntos
Fígado Gorduroso , PPAR delta , Masculino , Animais , Camundongos , PPAR delta/genética , Fosfatidilcolinas/metabolismo , Ligantes , Fígado Gorduroso/genética , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/metabolismo , Fígado/metabolismo , DietaRESUMO
OBJECTIVE: Thioesterase superfamily member 1 (Them1) is a long chain acyl-CoA thioesterase comprising two N-terminal HotDog fold enzymatic domains linked to a C-terminal lipid-sensing steroidogenic acute regulatory transfer-related (START) domain, which allosterically modulates enzymatic activity. Them1 is highly expressed in thermogenic adipose tissue, where it functions to suppress energy expenditure by limiting rates of fatty acid oxidation, and is induced markedly in liver in response to high fat feeding, where it suppresses fatty acid oxidation and promotes glucose production. Them1-/- mice are protected against non-alcoholic fatty liver disease (NAFLD), suggesting Them1 as a therapeutic target. METHODS: A high-throughput small molecule screen was performed to identify promising inhibitors targeting the fatty acyl-CoA thioesterase activity of purified recombinant Them1.Counter screening was used to determine specificity for Them1 relative to other acyl-CoA thioesterase isoforms. Inhibitor binding and enzyme inhibition were quantified by biophysical and biochemical approaches, respectively. Following structure-based optimization, lead compounds were tested in cell culture. RESULTS: Two lead allosteric inhibitors were identified that selectively inhibited Them1 by binding the START domain. In mouse brown adipocytes, these inhibitors promoted fatty acid oxidation, as evidenced by increased oxygen consumption rates. In mouse hepatocytes, they promoted fatty acid oxidation, but also reduced glucose production. CONCLUSION: Them1 inhibitors could prove attractive for the pharmacologic management of NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Glucose/metabolismo , Ácidos Graxos/metabolismoRESUMO
Transcription factors play important roles in the development of the intestinal epithelium and its ability to respond to endocrine, nutritional, and microbial signals. Hepatocyte nuclear factor 4 family nuclear receptors are liganded transcription factors that are critical for the development and function of multiple digestive organs in vertebrates, including the intestinal epithelium. Zebrafish have 3 hepatocyte nuclear factor 4 homologs, of which, hnf4a was previously shown to mediate intestinal responses to microbiota in zebrafish larvae. To discern the functions of other hepatocyte nuclear factor 4 family members in zebrafish development and intestinal function, we created and characterized mutations in hnf4g and hnf4b. We addressed the possibility of genetic redundancy amongst these factors by creating double and triple mutants which showed different rates of survival, including apparent early lethality in hnf4a; hnf4b double mutants and triple mutants. RNA sequencing performed on digestive tracts from single and double mutant larvae revealed extensive changes in intestinal gene expression in hnf4a mutants that were amplified in hnf4a; hnf4g mutants, but limited in hnf4g mutants. Changes in hnf4a and hnf4a; hnf4g mutants were reminiscent of those seen in mice including decreased expression of genes involved in intestinal function and increased expression of cell proliferation genes, and were validated using transgenic reporters and EdU labeling in the intestinal epithelium. Gnotobiotics combined with RNA sequencing also showed hnf4g has subtler roles than hnf4a in host responses to microbiota. Overall, phenotypic changes in hnf4a single mutants were strongly enhanced in hnf4a; hnf4g double mutants, suggesting a conserved partial genetic redundancy between hnf4a and hnf4g in the vertebrate intestine.
Assuntos
Fator 4 Nuclear de Hepatócito , Mucosa Intestinal , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/fisiologia , Mucosa Intestinal/embriologia , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Intestinos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologiaRESUMO
BACKGROUND & AIMS: The intestine constantly interprets and adapts to complex combinations of dietary and microbial stimuli. However, the transcriptional strategies by which the intestinal epithelium integrates these coincident sources of information remain unresolved. We recently found that microbiota colonization suppresses epithelial activity of hepatocyte nuclear factor 4 nuclear receptor transcription factors, but their integrative regulation was unknown. METHODS: We compared adult mice reared germ-free or conventionalized with a microbiota either fed normally or after a single high-fat meal. Preparations of unsorted jejunal intestinal epithelial cells were queried using lipidomics and genome-wide assays for RNA sequencing and ChIP sequencing for the activating histone mark H3K27ac and hepatocyte nuclear factor 4 alpha. RESULTS: Analysis of lipid classes, genes, and regulatory regions identified distinct nutritional and microbial responses but also simultaneous influence of both stimuli. H3K27ac sites preferentially increased by high-fat meal in the presence of microbes neighbor lipid anabolism and proliferation genes, were previously identified intestinal stem cell regulatory regions, and were not hepatocyte nuclear factor 4 alpha targets. In contrast, H3K27ac sites preferentially increased by high-fat meal in the absence of microbes neighbor targets of the energy homeostasis regulator peroxisome proliferator activated receptor alpha, neighbored fatty acid oxidation genes, were previously identified enterocyte regulatory regions, and were hepatocyte factor 4 alpha bound. CONCLUSIONS: Hepatocyte factor 4 alpha supports a differentiated enterocyte and fatty acid oxidation program in germ-free mice, and that suppression of hepatocyte factor 4 alpha by the combination of microbes and high-fat meal may result in preferential activation of intestinal epithelial cell proliferation programs. This identifies potential transcriptional mechanisms for intestinal adaptation to multiple signals and how microbiota may modulate intestinal lipid absorption, epithelial cell renewal, and systemic energy balance.
Assuntos
Duodeno , Microbioma Gastrointestinal , Mucosa Intestinal , Animais , Duodeno/metabolismo , Duodeno/microbiologia , Ácidos Graxos/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lipídeos , CamundongosRESUMO
Lysosomes are key cellular organelles that metabolize extra- and intracellular substrates. Alterations in lysosomal metabolism are implicated in ageing-associated metabolic and neurodegenerative diseases. However, how lysosomal metabolism actively coordinates the metabolic and nervous systems to regulate ageing remains unclear. Here we report a fat-to-neuron lipid signalling pathway induced by lysosomal metabolism and its longevity-promoting role in Caenorhabditis elegans. We discovered that induced lysosomal lipolysis in peripheral fat storage tissue upregulates the neuropeptide signalling pathway in the nervous system to promote longevity. This cell-non-autonomous regulation is mediated by a specific polyunsaturated fatty acid, dihomo-γ-linolenic acid, and LBP-3 lipid chaperone protein transported from the fat storage tissue to neurons. LBP-3 binds to dihomo-γ-linolenic acid, and acts through NHR-49 nuclear receptor and NLP-11 neuropeptide in neurons to extend lifespan. These results reveal lysosomes as a signalling hub to coordinate metabolism and ageing, and lysosomal signalling mediated inter-tissue communication in promoting longevity.
Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , Lisossomos/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismoRESUMO
In brown adipose tissue, thermogenesis is suppressed by thioesterase superfamily member 1 (Them1), a long chain fatty acyl-CoA thioesterase. Them1 is highly upregulated by cold ambient temperature, where it reduces fatty acid availability and limits thermogenesis. Here, we show that Them1 regulates metabolism by undergoing conformational changes in response to ß-adrenergic stimulation that alter Them1 intracellular distribution. Them1 forms metabolically active puncta near lipid droplets and mitochondria. Upon stimulation, Them1 is phosphorylated at the N-terminus, inhibiting puncta formation and activity and resulting in a diffuse intracellular localization. We show by correlative light and electron microscopy that Them1 puncta are biomolecular condensates that are inhibited by phosphorylation. Thus, Them1 forms intracellular biomolecular condensates that limit fatty acid oxidation and suppress thermogenesis. During a period of energy demand, the condensates are disrupted by phosphorylation to allow for maximal thermogenesis. The stimulus-coupled reorganization of Them1 provides fine-tuning of thermogenesis and energy expenditure.
Assuntos
Metabolismo Energético , Palmitoil-CoA Hidrolase/metabolismo , Tecido Adiposo Marrom/metabolismo , Agonistas Adrenérgicos/farmacologia , Sequência de Aminoácidos , Animais , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Espaço Intracelular/metabolismo , Gotículas Lipídicas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Oxirredução , Palmitoil-CoA Hidrolase/química , Palmitoil-CoA Hidrolase/genética , Fosforilação/efeitos dos fármacos , Agregados Proteicos , Serina/metabolismo , Termogênese/efeitos dos fármacosRESUMO
The lysosome plays a crucial role in the regulation of longevity. Lysosomal degradation is tightly coupled with autophagy that is induced by many longevity paradigms and required for lifespan extension. The lysosome also serves as a hub for signal transduction and regulates longevity via affecting nuclear transcription. One lysosome-to-nucleus retrograde signaling pathway is mediated by a lysosome-associated fatty acid binding protein LBP-8 in Caenorhabditis elegans. LBP-8 shuttles lysosomal lipids into the nucleus to activate lipid regulated nuclear receptors NHR-49 and NHR-80 and consequently promote longevity. However, the structural basis of LBP-8 action remains unclear. Here, we determined the first 1.3 Å high-resolution structure of this life-extending protein LBP-8, which allowed us to identify a structurally conserved nuclear localization signal and amino acids involved in lipid binding. Additionally, we described the range of fatty acids LBP-8 is capable of binding and show that it binds to life-extending ligands in worms such as oleic acid and oleoylethanolamide with high affinity.