Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37420704

RESUMO

Internet of Things (IoT) systems cooperative with unmanned aerial vehicles (UAVs) have been put into use for more than ten years, from transportation to military surveillance, and they have been shown to be worthy of inclusion in the next wireless protocols. Therefore, this paper studies user clustering and the fixed power allocation approach by placing multi-antenna UAV-mounted relays for extended coverage areas and achieving improved performance for IoT devices. In particular, the system enables UAV-mounted relays with multiple antennas together with non-orthogonal multiple access (NOMA) to provide a potential way to enhance transmission reliability. We presented two cases of multi-antenna UAVs such as maximum ratio transmission and the best selection to highlight the benefits of the antenna-selections approach with low-cost design. In addition, the base station managed its IoT devices in practical scenarios with and without direct links. For two cases, we derive closed-form expressions of outage probability (OP) and closed-form approximation ergodic capacity (EC) generated for both devices in the main scenario. The outage and ergodic capacity performances in some scenarios are compared to confirm the benefits of the considered system. The number of antennas was found to have a crucial impact on the performances. The simulation results show that the OP for both users strongly decreases when the signal-to-noise ratio (SNR), number of antennas, and fading severity factor of Nakagami-m fading increase. The proposed scheme outperforms the orthogonal multiple access (OMA) scheme in outage performance for two users. The analytical results match Monte Carlo simulations to confirm the exactness of the derived expressions.


Assuntos
Internet das Coisas , Militares , Humanos , Reprodutibilidade dos Testes , Análise por Conglomerados , Simulação por Computador
2.
Sensors (Basel) ; 21(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199489

RESUMO

Full-duplex (FD) with simultaneous wireless information and power transfer (SWIPT) in wireless ad hoc networks has received increased attention as a technology for improving spectrum and energy efficiency. This paper studies the outage performance for a SWIPT-based decode-and-forward (DF) FD relaying network consisting of a single-antenna source S, a two-antenna relay R, and a multi-antenna destination D. Specifically, we propose four protocols, namely static time-switching factor with selection combining (STSF-SC), static time-switching factor with maximal ratio combining (STSF-MRC), optimal dynamic time-switching factor with selection combining (ODTSF-SC), and optimal dynamic time-switching factor with maximal ratio combining (ODTSF-MRC) to fully investigate the outage performance of the proposed system. In particular, the optimal time-switching factor from the ODTSF-SC and ODTSF-MRC methods is designed to maximize the total received data at the destination. In this context, we derive exact closed-formed expressions for all schemes in terms of the outage probability (OP). Finally, the Monte Carlo simulations are conducted to corroborate the theoretical analysis's correctness and the proposed schemes' effectiveness.

3.
Sensors (Basel) ; 21(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34833729

RESUMO

In the present paper, we investigate the performance of the simultaneous wireless information and power transfer (SWIPT) based cooperative cognitive radio networks (CCRNs). In particular, the outage probability is derived in the closed-form expressions under the opportunistic partial relay selection. Different from the conventional CRNs in which the transmit power of the secondary transmitters count merely on the aggregate interference measured on the primary networks, the transmit power of the SWIPT-enabled transmitters is also constrained by the harvested energy. As a result, the mathematical framework involves more correlated random variables and, thus, is of higher complexity. Monte Carlo simulations are given to corroborate the accuracy of the mathematical analysis and to shed light on the behavior of the OP with respect to several important parameters, e.g., the transmit power and the number of relays. Our findings illustrate that increasing the transmit power and/or the number of relays is beneficial for the outage probability.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Cognição , Método de Monte Carlo , Probabilidade
4.
Sensors (Basel) ; 20(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093275

RESUMO

Relay communication, in which the relay forwards the signal received by a source to a destination, has a massive consideration in research, due to its ability to expand the coverage, increase the capacity, and reduce the power consumption. In this paper, we proposed and investigated energy harvesting (EH) based two-way half-duplex (TWHD) relaying sensors network using selection combining (SC) over block Rayleigh fading channel. In this model, we proposed the direct link between two sources for improving the system performance. For the system performance analysis, we investigated and derived the closed-form of the exact and upper bound Ergodic capacity (EC) and the exact form of the symbol error ratio (SER). By using the Monte Carlo simulation, the correctness of the research results is verified in the influence of the main system parameters. From the discussions, we can see that the analytical and simulation agree well with each other.

5.
Sensors (Basel) ; 19(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866513

RESUMO

In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa