Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(19): 10701-10876, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39288258

RESUMO

In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.

2.
Molecules ; 28(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687039

RESUMO

Sulfur-protected enantiopure P-chiral 1-phosphanorbornane silyl ethers 5a,b are obtained in high yields via the reaction of the hydroxy group of P-chiral 1-phosphanorbornane alcohol 4 with tert-butyldimethylsilyl chloride (TBDMSCl) and triphenylsilyl chloride (TPSCl). The corresponding optically pure silyl ethers 5a,b are purified via crystallization and fully structurally characterized. Desulfurization with excess Raney nickel gives access to bulky monodentate enantiopure phosphorus(III) 1-phosphanorbornane silyl ethers 6a,b which are subsequently applied as ligands in iridium-catalyzed asymmetric hydrogenation of a prochiral ketone and enamide. Better activity and selectivity were observed in the latter case.

3.
Angew Chem Int Ed Engl ; 62(26): e202301329, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-36847781

RESUMO

The enantioselective hydrogenation of cyclic enamides has been achieved using an earth-abundant cobalt-bisphosphine catalyst. Using CoCl2 /(S,S)-Ph-BPE, several trisubstituted carbocyclic enamides were reduced with high activity and excellent enantioselectivity (up to 99 %) to the corresponding saturated amides. The methodology can be extended to the synthesis of chiral amines by base hydrolysis of the hydrogenation products. Preliminary mechanistic investigations reveal the presence of a high spin cobalt (II) species in the catalytic cycle. We propose that the hydrogenation of the carbon-carbon double bond proceeds via a sigma-bond-metathesis pathway.


Assuntos
Amidas , Cobalto , Amidas/química , Hidrogenação , Estereoisomerismo , Catálise , Carbono
4.
J Org Chem ; 86(1): 103-109, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33245661

RESUMO

Aryl boronic acids and esters are important building blocks in API synthesis. The palladium-catalyzed Suzuki-Miyaura borylation is the most common method for their preparation. This paper describes an improvement of the current reaction conditions. By using lipophilic bases such as potassium 2-ethyl hexanoate, the borylation reaction could be achieved at 35 °C in less than 2 h with very low palladium loading (0.5 mol %). A preliminary mechanistic study shows a hitherto unrecognized inhibitory effect by the carboxylate anion on the catalytic cycle, whereas 2-ethyl hexanoate minimizes this inhibitory effect. This improved methodology enables borylation of a wide range of substrates under mild conditions.

5.
Chemistry ; 25(33): 7820-7825, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30973658

RESUMO

Catalytic isomerization of allylic alcohols in ethanol as a green solvent was achieved by using air and moisture stable cobalt (II) complexes in the absence of any additives. Under mild conditions, the cobalt PNP pincer complex substituted with phenyl groups on the phosphorus atoms appeared to be the most active. High rates were obtained at 120 °C, even though the addition of one equivalent of base increases the speed of the reaction drastically. Although some evidence was obtained supporting a dehydrogenation-hydrogenation mechanism, it was proven that this is not the major mechanism. Instead, the cobalt hydride complex formed by dehydrogenation of ethanol is capable of double-bond isomerization through alkene insertion-elimination.

6.
Angew Chem Int Ed Engl ; 58(4): 1129-1133, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30506963

RESUMO

Herein, we report on the use of the iron pincer complex Iron-MACHO-BH, in the base-free transfer hydrogenation of esters with EtOH as a hydrogen source. More than 20 substrates including aromatic and aliphatic esters and lactones were reduced affording the desired primary alcohols and diols with moderate to excellent isolated yields. It is also possible to reduce polyesters to the diols with this method, enabling a novel way of plastic recycling. Reduction of the renewable substrate methyl levulinate proceeds to form 1,4-pentanediol directly. The yields are largely governed by the equilibrium between the alcohol and the ethyl ester.

7.
Angew Chem Int Ed Engl ; 58(11): 3486-3490, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30650227

RESUMO

Use of ZrO2 /SiO2 as a solid acid catalyst in the ring-opening of biobased γ-valerolactone with methanol in the gas phase leads to mixtures of methyl 2-, 3-, and 4-pentenoate (MP) in over 95 % selectivity, containing a surprising 81 % of M4P. This process allows the application of a selective hydroformylation to this mixture to convert M4P into methyl 5-formyl-valerate (M5FV) with 90 % selectivity. The other isomers remain unreacted. Reductive amination of M5FV and ring-closure to ϵ-caprolactam in excellent yield had been reported before. The remaining mixture of 2- and 3-MP was subjected to an isomerising methoxycarbonylation to dimethyl adipate in 91 % yield.

8.
Beilstein J Org Chem ; 11: 622-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26124864

RESUMO

In the hydrogenation of sluggish unactivated enamine substrates, Rh complexes of electron-deficient phosphines are demonstrated to be far more reactive catalysts than those derived from triphenylphosphine. These operate at low catalyst loadings (down to 0.01 mol %) and are able to reduce tetrasubstituted enamines. The use of the sustainable and environmentally benign solvent (R)-limonene for the reaction is also reported with the amine isolated by acid extraction.

9.
ChemSusChem ; 16(9): e202202353, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36752680

RESUMO

Direct asymmetric reductive amination of bio-based levulinic acid (LA) to the enantioenriched 5-methylpyrrolidinone is achieved by using a readily available chiral Ru/bisphosphine catalyst with excellent enantioselectivity (up to 96 % ee) and high isolated yield (up to 89 %). Methyl levulinate (ML), a byproduct from the industrial production of 2,5-furandicarboxylic acid (FDCA), can be used instead of LA with similar reactivity and selectivity. Mass spectrometry and isotope labelling studies indicate that the chiral lactam is formed via imine-enamine tautomerization/cyclization followed by asymmetric hydrogenation of the cyclic enamide.

10.
Chem Commun (Camb) ; 59(54): 8444-8447, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37337749

RESUMO

Primary and secondary amines selectively react with the lactone moiety of γ-valerolactone oxide (GVLO). Several primary amines afforded the resulting epoxyamides with an intact epoxy group. In some cases addition of two equivalents of amine resulted in additional epoxide opening to give α,γ-dihydroxy-ß-amino-amides. The selective lactone-opening in GVLO was further corroborated by DFT-studies.

11.
Chem Commun (Camb) ; 58(94): 13091-13094, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36342084

RESUMO

Methyl vinyl glycolate (MVG) can be obtained by acid-catalyzed conversion of C4 and C6 sugars. Applications of MVG in polymers are so far limited to its use as co-monomer for poly(lactic acid) and as crosslinking agent. In this work, hydroformylation and methoxycarbonylation of MVG were investigated to produce novel bifunctional monomers. Polyesters with high renewable-atom content were successfully prepared and characterized.


Assuntos
Glicolatos , Poliésteres , Polímeros , Cloreto de Polivinila
12.
Chem Commun (Camb) ; 58(29): 4639-4642, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35311876

RESUMO

An efficient approach to synthesize α-keto aldehydes was established through selective oxidation of α-hydroxy ketones catalyzed by Cu(I) using oxygen as oxidant. A wide array of α-keto aldehydes was prepared with isolated yields of up to 87%. The potential utilization of this reaction was evaluated by gram-scale reactions and synthetic applications.


Assuntos
Aldeídos , Cetonas , Catálise , Estrutura Molecular , Oxirredução
13.
Chem Commun (Camb) ; 58(35): 5415-5418, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35416214

RESUMO

Silicon-modified polyureas were depolymerized by hydrogenation in the presence of Ru and Mn catalysts. Yields of up to 84% of the aliphatic diamine and 81% of silicon-containing diamine were achieved with a commercially available PNP-Ru catalyst.


Assuntos
Diaminas , Silício , Catálise , Hidrogenação , Polímeros
14.
ChemSusChem ; 15(20): e202201264, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35947792

RESUMO

Biomass derived glycolaldehyde was employed as C1 building block for the N-formylation of secondary amines using air as oxidant. The reaction is atom economic, highly selective and proceeds under catalyst free conditions. This strategy can be used for the synthesis of cyclic and acyclic formylamines, including DMF. Mechanistic studies suggest a radical oxidation pathway.


Assuntos
Acetaldeído , Aminas , Catálise , Oxidantes
15.
Chem Commun (Camb) ; 57(81): 10524-10527, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34550135

RESUMO

Industrially relevant intermediates such as malonic acid, malonates and 3-oxopropionates can be easily accessed by ozonolysis of α-angelica lactone, derived from the platform chemical levulinic acid. The roles of the solvent and of the quenching conditions are of key importance for the outcome of the reaction.


Assuntos
4-Butirolactona/análogos & derivados , Malonatos/química , Ozônio/química , 4-Butirolactona/química , Malonatos/síntese química , Estrutura Molecular
16.
Chem Sci ; 10(24): 6024-6034, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31360410

RESUMO

The limits to the supply of fossil resources and their ever increasing use forces us to think about future scenarios for fuels and chemicals. The platform chemical 5-hydroxymethyl-furfural (HMF) can be obtained from biomass in good yield and has the potential to be converted in just a few steps into a multitude of interesting products. Over the last 20 years, the conversion of HMF to 1-hydroxyhexane-2,5-dione (HHD) has been studied by several groups. It is possible to convert HMF into HHD by hydrogenation/hydrolytic ring opening reaction in aqueous phase using various heterogeneous and homogeneous catalysts. This review addresses both the state of the art of HHD synthesis, including mechanistic aspects of its formation, as well as the recent progress in the application of HHD as a building block for many useful chemicals including pyrroles, cyclopentanone derivatives and triols.

17.
ChemSusChem ; 12(17): 4082-4087, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31332956

RESUMO

The amount of plastic waste is continuously increasing. Besides conventional recycling, one solution to deal with this problem could be to use this waste as a resource for novel materials. In this study, polyesters are hydrogenated to give polyether polyols by using in situ-generated Ru-Triphos catalysts in combination with Lewis acids. The choice of Lewis acid and its concentration relative to the ruthenium catalyst are found to determine the selectivity of the reaction. Monitoring of the molecular weight during the reaction confirms a sequential mechanism in which the diols that are formed by hydrogenation are etherified to the polyethers. To probe the applicability of this tandem hydrogenation etherification approach, a range of polyester substrates is investigated. The oligoether products that form in these reactions have the chain lengths that are appropriate for application in the adhesives and coatings industries. This strategy makes polyether polyols accessible that are otherwise difficult to obtain from conventional fossil-based feedstocks.

18.
Dalton Trans ; 48(36): 13580-13588, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31464307

RESUMO

Novel air stable ruthenium(ii) complexes bearing tridentate ligands bis((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amine (L1), 1-(1-benzyl-1H-1,2,3-triazol-4-yl)-N-(pyridin-2-ylmethyl)methanamine (L2) or 2-(4-phenyl-1H-1,2,3-triazol-1-yl)-N-(pyridin-2-ylmethyl)ethan-1-amine (L3) were synthesised. The nitrogen based ligands were easily prepared by virtue of click chemistry using cheap and commercially available reagents. The ruthenium complexes were obtained by heating the Ru(PPh3)3Cl2 precursor and the tridentate NNN ligand in toluene under reflux for 2 hours, achieving yields of 82-87%. These complexes were fully characterized by means of NMR, FT-IR and high resolution ESI spectroscopy. The crystal structure of one of the complexes was determined. These complexes showed excellent activity and selectivity in the hydrogenation of ketones and aldehydes. DFT calculations show that complex 3 may react through an outer-sphere catalytic cycle rather than via an inner-sphere mechanism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa