Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 23(3): 215, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37389664

RESUMO

Potatoes in India are very susceptible to apical leaf curl disease, which causes severe symptoms and greater yield losses. Because the majority of potato cultivars are susceptible to the virus, it is crucial to discover sources of resistance and investigate the mechanism of resistance/susceptibility in potato cultivars. In this study, the gene expression profile of two potato cultivars, Kufri Bahar (resistant) and Kufri Pukhraj (susceptible), varying in their level of resistance to ToLCNDV, was analyzed using RNA-Seq. The Ion ProtonTM system was used to sequence eight RiboMinus RNA libraries from inoculated and uninoculated potato plants at 15 and 20 days after inoculation (DAI). The findings indicated that the majority of differentially expressed genes (DEGs) were cultivar-or time-specific. These DEGs included genes for proteins that interact with viruses, genes linked with the cell cycle, genes for proteins involved in defense, transcription and translation initiation factors, and plant hormone signaling pathway genes. Interestingly, defense responses were generated early in Kufri Bahar, at 15 DAI, which may have impeded the replication and spread of ToLCNDV. This research provides a genome-wide transcriptional analysis of two potato cultivars with variable levels of ToLCNDV resistance. At an early stage, we observed suppression of genes that interact with viral proteins, induction of genes associated with restriction of cell division, genes encoding defense proteins, AP2/ERF transcription factors, and altered expression of zinc finger protein genes, HSPs, JA, and SA pathway-related genes. Our findings add to a greater comprehension of the molecular basis of potato resistance to ToLCNDV and may aid in the development of more effective disease management techniques.


Assuntos
Begomovirus , Solanum tuberosum , Solanum tuberosum/genética , RNA-Seq , Biblioteca Gênica
2.
Planta ; 257(4): 80, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36913037

RESUMO

MAIN CONCLUSION: Abiotic stresses adversely affect the productivity and production of vegetable crops. The increasing number of crop genomes that have been sequenced or re-sequenced provides a set of computationally anticipated abiotic stress-related responsive genes on which further research may be focused. Knowledge of omics approaches and other advanced molecular tools have all been employed to understand the complex biology of these abiotic stresses. A vegetable can be defined as any component of a plant that is eaten for food. These plant parts may be celery stems, spinach leaves, radish roots, potato tubers, garlic bulbs, immature cauliflower flowers, cucumber fruits, and pea seeds. Abiotic stresses, such as deficient or excessive water, high temperature, cold, salinity, oxidative, heavy metals, and osmotic stress, are responsible for the adverse activity in plants and, ultimately major concern for decreasing yield in many vegetable crops. At the morphological level, altered leaf, shoot and root growth, altered life cycle duration and fewer or smaller organs can be observed. Likewise different physiological and biochemical/molecular processes are also affected in response to these abiotic stresses. In order to adapt and survive in a variety of stressful situations, plants have evolved physiological, biochemical, and molecular response mechanisms. A comprehensive understanding of the vegetable's response to different abiotic stresses and the identification of tolerant genotypes are essential to strengthening each vegetable's breeding program. The advances in genomics and next-generation sequencing have enabled the sequencing of many plant genomes over the last twenty years. A combination of modern genomics (MAS, GWAS, genomic selection, transgenic breeding, and gene editing), transcriptomics, and proteomics along with next-generation sequencing provides an array of new powerful approaches to the study of vegetable crops. This review examines the overall impact of major abiotic stresses on vegetables, adaptive mechanisms and functional genomic, transcriptomic, and proteomic processes used by researchers to minimize these challenges. The current status of genomics technologies for developing adaptable vegetable cultivars that will perform better in future climates is also examined.


Assuntos
Proteômica , Verduras , Melhoramento Vegetal , Genômica , Produtos Agrícolas , Estresse Fisiológico/genética
3.
Planta ; 257(6): 115, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169910

RESUMO

MAIN CONCLUSION: Melatonin has a protective effect against heavy metal stress in plants by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. It enhances osmolyte production, increases antioxidant enzyme activity, and improves photosynthesis, thereby improving cellular functions. Understanding the melatonin-mediated response and signalling can sustain crop production in heavy metal-stressed soils. Melatonin is a pleiotropic signal molecule that plays a critical role in plant growth and stress tolerance, particularly against heavy metals in soil. Heavy metals (HMs) are ubiquitously found in the soil-water environment and readily taken up by plants, thereby disrupting mineral nutrient homeostasis, osmotic balance, oxidative stress, and altered primary and secondary metabolism. Plants combat HM stress through inbuilt defensive mechanisms, such as metal exclusion, restricted foliar translocation, metal sequestration and compartmentalization, chelation, and scavenging of free radicals by antioxidant enzymes. Melatonin has a protective effect against the damaging effects of HM stress in plants. It achieves this by immobilizing HM in cell walls and sequestering them in root cell vacuoles, reducing HM's translocation from roots to shoots. This mechanism improves the uptake of macronutrients and micronutrients in plants. Additionally, melatonin enhances osmolyte production, improving the plant's water relations, and increasing the activity of antioxidant enzymes to limit lipid peroxidation and reactive oxygen species (ROS) levels. Melatonin also decreases chlorophyll degradation while increasing its synthesis, and enhances RuBisCO activity for better photosynthesis. All these functions contribute to improving the cellular functions of plants exposed to HM stress. This review aims to gain better insight into the melatonin-mediated response and signalling under HM stress in plants, which may be useful in sustaining crop production in heavy metal-stressed soils.


Assuntos
Melatonina , Metais Pesados , Poluentes do Solo , Melatonina/farmacologia , Antioxidantes/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Solo
4.
Environ Res ; 233: 116357, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295582

RESUMO

Pesticide and fertilizer usage is at the center of agricultural production to meet the demands of an ever-increasing global population. However, rising levels of chemicals impose a serious threat to the health of humans, animals, plants, and even the entire biosphere because of their toxic effects. Biostimulants offer the opportunity to reduce the agricultural chemical footprint owing their multilevel, beneficial properties helping to make agriculture more sustainable and resilient. When applied to plants or to the soil an increased absorption and distribution of nutrients, tolerance to environmental stress, and improved quality of plant products explain the mechanisms by which these probiotics are useful. In recent years, the use of plant biostimulants has received widespread attention across the globe as an ecologically acceptable alternative to sustainable agricultural production. As a result, their worldwide market continues to grow, and further research will be conducted to broaden the range of the products now available. Through this review, we present a current understanding of biostimulants, their mode of action and their involvement in modulating abiotic stress responses, including omics research, which may provide a comprehensive assessment of the crop's response by correlating molecular changes to physiological pathways activated under stress conditions aggravated by climate change.


Assuntos
Agricultura , Mudança Climática , Humanos , Animais , Produtos Agrícolas , Solo , Estresse Fisiológico
5.
Int J Phytoremediation ; 25(1): 9-26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35298319

RESUMO

Boron (B) is an essential micronutrient, crucial for the growth and development of crop plants. However, the essential to a toxic range of B in the plant is exceptionally narrow, and symptoms develop with a slight change in its concentration in soil. The morphological and anatomical response, such as leaf chlorosis, stunted growth, and impairment in the xylem and phloem development occurs under B-toxicity. The transport of B in the plant occurs via transpiration stream with the involvement of B-channels and transporter in the roots. The higher accumulation of B in source and sink tissue tends to have lower photosynthetic, chlorophyll content, infertility, failure of pollen tube formation and germination, impairment of cell wall formation, and disruption of membrane systems. Excess B in the plant hinders the uptake of other micronutrients, hormone transport, and metabolite partitioning. B-mediated reactive oxygen species production leads to the synthesis of antioxidant enzymes which help to scavenge these molecules and prevent the plant from further oxidative damage. This review highlights morpho-anatomical, physiological, biochemical, and molecular responses of the plant under B toxicity and thereby might help the researchers to understand the related mechanism and design strategies to develop B tolerant cultivars.


The physio-biochemical and molecular responses and mechanism of B uptake under its toxic condition have been illustrated. The spatial distribution of boron under its toxic condition and its accumulation in the plant might be regulated with sugar alcohols (polyols). This review throws light on the elevated level of B in the soil-plant system and provides management strategies for alleviating B toxicity in the plant.


Assuntos
Antioxidantes , Boro , Boro/toxicidade , Biodegradação Ambiental , Antioxidantes/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas
6.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768834

RESUMO

Potatoes are developed vegetatively from tubers, and therefore potato virus transmission is always a possibility. The potato leafroll virus (PLRV) is a highly devastating virus of the genus Polerovirus and family Luteoviridae and is regarded as the second-most destructive virus after Potato virus Y. Multiple species of aphids are responsible for the persistent and non-propagating transmission of PLRV. Due to intrinsic tuber damage (net necrosis), the yield and quality are drastically diminished. PLRV is mostly found in phloem cells and in extremely low amounts. Therefore, we have attempted to detect PLRV in both potato tuber and leaves using a highly sensitive, reliable and cheap method of one-step reverse transcription-recombinase polymerase amplification (RT-RPA). In this study, an isothermal amplification and detection approach was used for efficient results. Out of the three tested primer sets, one efficiently amplified a 153-bp product based on the coat protein gene. In the present study, there was no cross-reactivity with other potato viruses and the optimal amplification reaction time was thirty minutes. The products of RT-RPA were amplified at a temperature between 38 and 42 °C using a simple heating block/water bath. The present developed protocol of one-step RT-RPA was reported to be highly sensitive for both leaves and tuber tissues equally in comparison to the conventional reverse transcription-polymerase chain reaction (RT-PCR) method. By using template RNA extracted employing a cellular disc paper-based extraction procedure, the method was not only simplified but it detected the virus as effectively as purified total RNA. The simplified one-step RT-RPA test was proven to be successful by detecting PLRV in 129 samples of various potato cultivars (each consisting of leaves and tubers). According to our knowledge, this is the first report of a one-step RT-RPA performed using simple RNA extracted from cellular disc paper that is equally sensitive and specific for detecting PLRV in potatoes. In terms of versatility, durability and the freedom of a highly purified RNA template, the one-step RT-RPA assay exceeds the RT-PCR assay, making it an effective alternative for the certification of planting materials, breeding for virus resistance and disease monitoring.


Assuntos
Luteoviridae , Solanum tuberosum , Viroses , Transcrição Reversa , Recombinases/genética , Solanum tuberosum/genética , Melhoramento Vegetal , Luteoviridae/genética , RNA , Nucleotidiltransferases/genética
7.
Plant Mol Biol ; 109(4-5): 385-399, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34783977

RESUMO

KEY MESSAGE: Melatonin plays a crucial role in the mitigation of plant biotic stress through induced defense responses and pathogen attenuation. Utilizing the current knowledge of signaling and associated mechanism of this phytoprotectant will be invaluable in sustainable plant disease management. Biotic stress in plants involves complex regulatory networks of various sensory and signaling molecules. In this context, the polyfunctional, ubiquitous-signaling molecule melatonin has shown a regulatory role in biotic stress mitigation in plants. The present review conceptualized the current knowledge concerning the melatonin-mediated activation of the defense signaling network that leads to the resistant or tolerant phenotype of the infected plants. Fundamentals of signaling networks involved in melatonin-induced reactive oxygen species (ROS) or reactive nitrogen species (RNS) scavenging through enzymatic and non-enzymatic antioxidants have also been discussed. Increasing evidence has suggested that melatonin acts upstream of mitogen-activated proteinase kinases in activation of defense-related genes and heat shock proteins that provide immunity against pathogen attack. Besides, the direct application of melatonin on virulent fungi and bacteria showed disrupted spore morphology, destabilization of cell ultrastructure, reduced biofilm formation, and enhanced mortality that led to attenuate disease symptoms on melatonin-treated plants. The transcriptome analysis has revealed the down-regulation of pathogenicity genes, metabolism-related genes, and up-regulation of fungicide susceptibility genes in melatonin-treated pathogens. The activation of melatonin-mediated systemic acquired resistance (SAR) through cross-talk with salicylic acid (SA), jasmonic acid (JA) has been essential for viral disease management. The high endogenous melatonin concentration has also been correlated with the up-regulation of genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). The present review highlights the versatile functions of melatonin towards direct inhibition of pathogen propagule along with active participation in mediating oxidative burst and simulating PTI, ETI and SAR responses. The hormonal cross-talk involving melatonin mediated biotic stress tolerance through defense signaling network suggests its suitability in a sustainable plant protection system.


Assuntos
Melatonina , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Imunidade Vegetal , Plantas/genética , Estresse Fisiológico
8.
Plant Mol Biol ; 110(4-5): 305-324, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35610527

RESUMO

Photosynthesis is the vital metabolism of the plant affected by abiotic stress such as high temperature and elevated [CO2] levels, which ultimately affect the source-sink relationship. Triose phosphate, the primary precursor of carbohydrate (starch and sucrose) synthesis in the plant, depends on environmental cues. The synthesis of starch in the chloroplasts of leaves (during the day), the transport of photoassimilates (sucrose) from source to sink, the loading and unloading of photoassimilates, and the accumulation of starch in the sink tissue all require a highly regulated network and communication system within the plant. These processes might be affected by high-temperature stress and elevated [CO2] conditions. Generally, elevated [CO2] levels enhance plant growth, photosynthetic rate, starch synthesis, and accumulation, ultimately diluting the nutrient of sink tissues. On the contrary, high-temperature stress is detrimental to plant development affecting photosynthesis, starch synthesis, sucrose synthesis and transport, and photoassimilate accumulation in sink tissues. Moreover, these environmental conditions also negatively impact the quality attributes such as grain/tuber quality, cooking quality, nutritional status in the edible parts and organoleptic traits. In this review, we have attempted to provide an insight into the source-sink relationship and the sugar metabolites synthesized and utilized by the plant under elevated [CO2] and high-temperature stress. This review will help future researchers comprehend the source-sink process for crop growth under changing climate scenarios.


Assuntos
Dióxido de Carbono , Fotossíntese , Dióxido de Carbono/metabolismo , Temperatura , Folhas de Planta/metabolismo , Sacarose/metabolismo , Amido/metabolismo , Carboidratos
9.
Planta ; 255(3): 68, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169941

RESUMO

MAIN CONCLUSION: The present review gives an insight into the salinity stress tolerance responses and mechanisms of underground vegetable crops. Phytoprotectants, agronomic practices, biofertilizers, and modern biotechnological approaches are crucial for salinity stress management. Underground vegetables are the source of healthy carbohydrates, resistant starch, antioxidants, vitamins, mineral, and nutrients which benefit human health. Soil salinity is a serious threat to agriculture that severely affects the growth, development, and productivity of underground vegetable crops. Salt stress induces several morphological, anatomical, physiological, and biochemical changes in crop plants which include reduction in plant height, leaf area, and biomass. Also, salinity stress impedes the growth of the underground organs, which ultimately reduces crop yield. Moreover, salt stress is detrimental to photosynthesis, membrane integrity, nutrient balance, and leaf water content. Salt tolerance mechanisms involve a complex interplay of several genes, transcription factors, and proteins that are involved in the salinity tolerance mechanism in underground crops. Besides, a coordinated interaction between several phytoprotectants, phytohormones, antioxidants, and microbes is needed. So far, a comprehensive review of salinity tolerance responses and mechanisms in underground vegetables is not available. This review aims to provide a comprehensive view of salt stress effects on underground vegetable crops at different levels of biological organization and discuss the underlying salt tolerance mechanisms. Also, the role of multi-omics in dissecting gene and protein regulatory networks involved in salt tolerance mechanisms is highlighted, which can potentially help in breeding salt-tolerant underground vegetable crops.


Assuntos
Salinidade , Verduras , Produtos Agrícolas , Melhoramento Vegetal , Estresse Salino
10.
Plant Cell Rep ; 41(3): 501-518, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34542670

RESUMO

Increasing temperature is a key component of global climate change, affecting crop growth and productivity worldwide. Wheat is a major cereal crop grown in various parts of the globe, which is affected severely by heat stress. The morphological parameters affected include germination, seedling establishment, source-sink activity, leaf area, shoot and root growth. The physiological parameters such as photosynthesis, respiration, leaf senescence, water and nutrient relation are also affected by heat. At the cellular level, heat stress leads to the generation of reactive oxygen species that disrupt the membrane system of thylakoid, chloroplast and plasma membrane. The deactivation of the photosystem, reduction in photosynthesis and inactivation of rubisco affect the production of photoassimilates and their allocation. This ultimately affects anthesis, grain filling, size, number and maturity of wheat grains, which hamper crop productivity. The interplay of various systems comprising antioxidants and hormones plays a crucial role in imparting heat stress tolerance in wheat. Thus, implementation of various omics technologies could foster in-depth insights on heat stress effects, eventually devising heat stress mitigation strategies by conventional and modern breeding to develop heat-tolerant wheat varieties. This review provides an integrative view of heat stress responses in wheat and also discusses approaches to develop heat-tolerant wheat varieties.


Assuntos
Melhoramento Vegetal , Triticum , Grão Comestível , Resposta ao Choque Térmico , Fotossíntese , Estresse Fisiológico , Triticum/metabolismo
11.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232603

RESUMO

The interaction between selective nutrients and linked genes involving a specific organ reveals the genetic make-up of an individual in response to a particular nutrient. The interaction of genes with food opens opportunities for the addition of bioactive compounds for specific populations comprising identical genotypes. The slight difference in the genetic blueprints of humans is advantageous in determining the effect of nutrients and their metabolism in the body. The basic knowledge of emerging nutrigenomics and nutrigenetics can be applied to optimize health, prevention, and treatment of diseases. In addition, nutrient-mediated pathways detecting the cellular concentration of nutrients such as sugars, amino acids, lipids, and metabolites are integrated and coordinated at the organismal level via hormone signals. This review deals with the interaction of nutrients with various aspects of nutrigenetics and nutrigenomics along with pathways involved in nutrient sensing and regulation, which can provide a detailed understanding of this new leading edge in nutrition research and its potential application to dietetic practice.


Assuntos
Dieta , Nutrigenômica , Amino Açúcares , Hormônios , Humanos , Lipídeos , Nutrientes , Percepção
12.
Mol Cell Probes ; 58: 101743, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051280

RESUMO

Potato virus X (PVX), is a serious threat to global potato production. A simple and rapid detection method is imperative for PVX diagnosis and early management. In this study, an isothermal one-step reverse transcription-recombinase polymerase amplification (RT-RPA) method was optimized for the quick and convenient detection of PVX in potato leaves and tubers. Our results revealed that this one-step RT-RPA method was highly efficient than the conventional reverse transcription-polymerase chain reaction (RT-PCR). The amplification reaction was free from cross-reactivity with other common potato viruses and completed within 30 min. Moreover, this RT-RPA assay did not require a thermocycler based specific temperature phase amplification and can be easily performed using a simple heating block or water bath at a temperature range of 39-42 °C. The sensitivity assay demonstrated that the developed one-step RT-RPA method was 100 times more sensitive than a routine one-step RT-PCR. Initially, the purified total RNA as the template isolated from infected leaves of potato was used for the detection of PVX. One-step RT-RPA was later performed using cellular disc paper-based simple RNA extract as a template that could detect the virus more efficiently than purified total RNA. The performance of the one-step RT-RPA assay was further evaluated using 500 field samples of leaves and tubers representing different cultivars and geographical regions. To our knowledge, this is the first report of rapid, sensitive, and reliable detection of PVX infection by one-step RT-RPA using cellular disc paper-based simple RNA extract from leaves and dormant tubers of potato. It is superior to the common RT-PCR assay in terms of its versatility, quickness, and independence of highly purified RNA template and can be adopted as a substitute to RT-PCR as an effective technique for seed potato certification, quarantine, breeding, and field surveys.


Assuntos
Potexvirus , Solanum tuberosum , Técnicas de Amplificação de Ácido Nucleico , Folhas de Planta , Potexvirus/genética , Recombinases/genética , Transcrição Reversa , Sensibilidade e Especificidade
13.
Physiol Plant ; 172(2): 1212-1226, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33305363

RESUMO

Drought stress imposes a serious threat to crop productivity and nutritional security. Drought adaptation mechanisms involve complex regulatory network comprising of various sensory and signaling molecules. In this context, melatonin has emerged as a potential signaling molecule playing a crucial role in imparting stress tolerance in plants. Melatonin pretreatment regulates various plant physiological processes such as osmoregulation, germination, photosynthesis, senescence, primary/secondary metabolism, and hormonal cross-talk under water deficit conditions. Melatonin-mediated regulation of ascorbate-glutathione (AsA-GSH) cycle plays a crucial role to scavenge reactive oxygen species generated in the cells during drought. Here, in this review, the current knowledge on the role of melatonin to ameliorate adverse effects of drought by modulating morphological, physiological, and redox regulatory processes is discussed. The role of melatonin to improve water absorption capacity of roots by regulating aquaporin channels and hormonal cross-talk involved in drought stress mitigation are also discussed. Overall, melatonin is a versatile bio-molecule involved in growth promotion and yield enhancement under drought stress that makes it a suitable candidate for eco-friendly crop production to ensure food security.


Assuntos
Melatonina , Adaptação Fisiológica , Secas , Fotossíntese , Plantas , Estresse Fisiológico
14.
Food Res Int ; 191: 114715, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059963

RESUMO

The positive health benefits of colored staples have led to a significant increase in interest in them as healthy food ingredients. Numerous in vitro and in vivo studies have demonstrated that colored cereals are rich in antioxidants, carotenoids, and xanthophylls, which are widely used as natural additives in the food industry. Additionally, shifts in consumer preferences have led to a preference for nutritionally balanced diets over traditional high-energy ones. Thus, colored cereals offer additional nutritional value that has been previously untapped. Besides providing essential nutrients, these natural pigments also have the potential to replace synthetic colors and food additives. This review aims to provide insights into the nutritional value of various colored staples compared to conventional starchy staples and their associated health benefits. Colored staples can be incorporated into daily diets, offering a nutritious and healthful addition to the table.


Assuntos
Antioxidantes , Grão Comestível , Valor Nutritivo , Humanos , Grão Comestível/química , Antioxidantes/análise , Carotenoides/análise , Xantofilas , Cor , Dieta Saudável
15.
PeerJ ; 12: e17578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948222

RESUMO

In the eastern coastal regions of Odisha, wilt caused by Fusarium oxysporum f. sp.capsici is an extremely damaging disease in chilli. This disease is very difficult to manage with chemical fungicides since it is soil-borne in nature. The natural rhizosphere soil of the chilli plant was used to isolate and test bacterial antagonists for their effectiveness and ability to promote plant growth. Out of the fifty-five isolates isolated from the rhizosphere of healthy chilli plants, five isolates, namely Iso 01, Iso 17, Iso 23, Iso 24, and Iso 32, showed their highly antagonistic activity against F. oxysporum f. sp. capsici under in vitro. In a dual culture, Iso 32 (73.3%) and Iso 24 (71.5%) caused the highest level of pathogen inhibition. In greenhouse trials, artificially inoculated chilli plants treated with Iso 32 (8.8%) and Iso 24 (10.2%) had decreased percent disease incidence (PDI), with percent disease reduction over control of 85.6% and 83.3%, respectively. Iso 32 and Iso 24 treated chilli seeds have shown higher seed vigor index of 973.7 and 948.8, respectively, as compared to untreated control 636.5. Furthermore, both the isolates significantly increased plant height as well as the fresh and dry weight of chilli plants under the rolled paper towel method. Morphological, biochemical, and molecular characterization identified Bacillus amyloliquefaciens (MH491049) as the key antagonist. This study demonstrates that rhizobacteria, specifically Iso 32 and Iso 24, can effectively protect chilli plants against Fusarium wilt while promoting overall plant development. These findings hold promise for sustainable and eco-friendly management of Fusarium wilt in chilli cultivation.


Assuntos
Fusarium , Doenças das Plantas , Rizosfera , Microbiologia do Solo , Fusarium/isolamento & purificação , Fusarium/patogenicidade , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Capsicum/microbiologia , Capsicum/crescimento & desenvolvimento , Antibiose/fisiologia , Desenvolvimento Vegetal
16.
Heliyon ; 10(7): e28758, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38576553

RESUMO

Mango is a commercial fruit crop of India that suffers huge postharvest losses every year. The application of biocontrol agents (BCAs) bears a vast potential for managing the same, which is yet to be exploited to its fullest extent. Hence, studies were conducted for BCAs application of Debaryomyces hansenii, Bacillus subtilis and Pseudomonas fluorescens strains on mango fruit under in-vitro, in-vivo conditions to know the efficacy of these BCAs on the postharvest pathogen, shelf life and quality retention of mango fruit. The 'poisoned food technique' was attempted for in-vitro studies. For the in-vivo studies, fruit of the commercial cultivar 'Amrapali' were un-inoculated and pre-inoculated with major postharvest pathogens (anthracnose: Colletotrichum gloeosporioides and stem-end rot: Botryodiplodia theobromae) were treated with BCA, followed by ambient storage at (24 ± 4 °C, 75 ± 5 % RH). From the results, it has been observed that under in vitro studies, BCA Debaryomyces hansenii (Strain: KP006) and Bacillus subtilis (Strain: BJ0011) at the treatment level 108 CFU mL-1 while, the Pseudomonas fluorescens at 109 CFU mL-1 (Strain: BE0001) were significantly effective for pathogen inhibition. However, under the in vivo studies, the BCA Debaryomyces hansenii (Strain: KP006) at 108 CFU mL-1 treatment level was found to significantly reduce the pathogen's decay incidence while positively influencing the shelf life and biochemical (quality) attributes. This treatment increased the storage life of mango fruit by more than three days over control fruit. Therefore, BCA Debaryomyces hansenii (Strain: KP006) at 108 CFU mL-1 can be used to control the postharvest pathological loss of mango fruit without affecting its internal quality.

17.
Heliyon ; 10(4): e26718, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434015

RESUMO

Soil salinity has emerged as a critical abiotic stress in potato production, whereas wilt disease, caused by Fusarium solani, is the significant biotic stress. An experiment was performed to decipher the occurrence of wilt incidence by F. solani FJ1 under the influence of salinity in both in vitroand pot culture conditions. High salt concentration negatively influenced root and shoot development in the variety "Kufri Jyoti" but positively affected the mycelial growth and sporulation behaviours of F. solani FJ1. There was abundant whitish mycelial growth with enhanced biomass and high sporulation (microconidia production) in F. solani FJ1 cultured on salt-supplemented media. Moreover, under high salinity conditions (EC 2-8 dS m-1), severe wilting and rotting of vascular bundles were observed in plants artificially inoculated with F. solani FJ1. The mortality rate of potato plants was significantly higher under individual and combined stresses as compared to control. The wilt index of individual and combined stressed plants was also substantially higher compared to the control. Additionally, compared to the control, there was a significant decrease in total chlorophyll content and membrane stability index of the leaves under combined stress. However, the total phenols were increased under stress conditions. The total sugar content of potato plants decreased in infected plants, but increased when exposed to salt stress or a combination of salt stress and pathogen infection. F. solani infection also increased the activity of peroxidase (POX) and decreased the activity of phenylalanine ammonia-lyase (PAL) and catalase (CAT). These results suggest that Fusarium wilt and dry rot will be a more severe disease for potato cultivation in saline soils.

18.
Heliyon ; 10(12): e33247, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39027430

RESUMO

India is renowned for its mango diversity, with more than 1000 genotypes reported. However, the Himalayan plains bear some elite genotypes which supposed to bear high postharvest value, the systemic postharvest study of which is yet to be attempted. The aim of present study is to evaluate the postharvest quality and ripening behviour of these important genotypes. Thus, 15 un-explored mango genotypes of this region were selected and evaluated for ripening behaviour and detailed postharvest profiling via internal (total phenolic and total flavonoid content), nutritional attributes (Brix: acid ratio, total carotenoid concentration, ascorbic acid content and antioxidant activity), sensory evaluation, fruit softening enzymes (polygalactouronase, pectin methylesterase and lipoxygenase), shelf life attributes (respiration rate, physiological loss in weight and storage life in days) external attributes (fruit weight, fruit firmness, peel thickness, fruit shape and dry seed weight) and mineral contents (Calcium, potassium and phosphorous) under ambient storage (25 ± 4 °C and 65 ± 5 % RH). The results revealed that the highest total flavonoid content (682.40 µg g-1), ascorbic acid (46.88 mg 100 g-1) and antioxidant activity (4.84 µmol TE g-1) exhibited by 'Sukul'. The total phenolic content was recorded as the highest in 'Safed Malda' (510.42 µg GAE g-1 FW), and total carotenoid concentration was recorded as the highest in 'Sipiya' (7.30 mg 100 g-1) 'Zardalu' (7.04 mg 100 g-1) and 'Mithua' (6.98 mg 100 g-1). Interestingly, genotypes such as 'Sukul', Sipiya' and 'Krishna Bhog 'exhibited a 4-5 days higher storage life than other selected genotypes. Screened genotypes exhibited a high diversity of nutritional and biochemical contents. The results of this study bear practical utility for research (quality improvement programme) and the processing industry.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa