Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Glycobiology ; 32(6): 506-517, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35275192

RESUMO

The amyloid precursor protein (APP) is a ubiquitously expressed type 1 transmembrane protein mostly known for serving as a precursor to the amyloid-ß peptide (Aß), a culprit in Alzheimer disease (AD). However, APP also has important physiological functions by being implicated in, for instance, adhesion, signaling, neuronal development, and synaptic function. Human APP contains 2 N-glycosylation sites, at asparagine (N) 467 (N467) and N496. Here, we studied the role of N-glycosylation on APP trafficking and processing by constructing APP-SNAP plasmid vectors for wildtype APP and N-glycosylation site mutants in which N467 or N496 was replaced by glutamine (Q) and expressed these in HEK293T cells. Lack of either of the 2 N-glycans resulted in a reduction in the size of intracellular APP-SNAP-positive vesicles and a reduction of APP-SNAP in the plasma membrane and lysosomes. Importantly, loss of either of the 2 N-glycans resulted in elevated levels of intracellular as well as secreted Aß42. These data suggest that N-glycans have a major impact on trafficking and processing of APP and could play an important role in the development of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Glicosilação , Células HEK293 , Humanos
2.
Mol Cell Proteomics ; 19(1): 128-141, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699905

RESUMO

Synaptic dysfunction is an early pathogenic event in Alzheimer disease (AD) that contributes to network disturbances and cognitive decline. Some synapses are more vulnerable than others, including the synapses of the perforant path, which provides the main excitatory input to the hippocampus. To elucidate the molecular mechanisms underlying the dysfunction of these synapses, we performed an explorative proteomic study of the dentate terminal zone of the perforant path. The outer two-thirds of the molecular layer of the dentate gyrus, where the perforant path synapses are located, was microdissected from five subjects with AD and five controls. The microdissected tissues were dissolved and digested by trypsin. Peptides from each sample were labeled with different isobaric tags, pooled together and pre-fractionated into 72 fractions by high-resolution isoelectric focusing. Each fraction was then analyzed by liquid chromatography-mass spectrometry. We quantified the relative expression levels of 7322 proteins, whereof 724 showed significantly altered levels in AD. Our comprehensive data analysis using enrichment and pathway analyses strongly indicated that presynaptic signaling, such as exocytosis and synaptic vesicle cycle processes, is severely disturbed in this area in AD, whereas postsynaptic proteins remained unchanged. Among the significantly altered proteins, we selected three of the most downregulated synaptic proteins; complexin-1, complexin-2 and synaptogyrin-1, for further validation, using a new cohort consisting of six AD and eight control cases. Semi-quantitative analysis of immunohistochemical staining confirmed decreased levels of complexin-1, complexin-2 and synaptogyrin-1 in the outer two-thirds of the molecular layer of the dentate gyrus in AD. Our in-depth proteomic analysis provides extensive knowledge on the potential molecular mechanism underlying synaptic dysfunction related to AD and supports that presynaptic alterations are more important than postsynaptic changes in early stages of the disease. The specific synaptic proteins identified could potentially be targeted to halt synaptic dysfunction in AD.


Assuntos
Doença de Alzheimer/patologia , Giro Denteado/patologia , Via Perfurante/patologia , Proteínas/metabolismo , Proteoma , Sinapses/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Giro Denteado/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Via Perfurante/metabolismo , Proteômica/métodos , Sinapses/metabolismo , Transmissão Sináptica
3.
J Neurochem ; 159(2): 292-304, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32986846

RESUMO

Protein glycosylation is crucial for the central nervous system and brain functions, including processes that are defective in Alzheimer disease (AD) such as neurogenesis, synaptic function, and memory formation. Still, the roles of glycans in the development of AD are relatively unexplored. Glycomics studies of cerebrospinal fluid (CSF) have previously shown altered glycosylation pattern in patients with different stages of cognitive impairment, including AD, compared to healthy controls. As a consequence, we hypothesized that the glycan profile is altered in the brain of patients with AD and analyzed the asparagine-linked (N-linked) glycan profile in hippocampus and cortex in AD and control brain. Glycans were enzymatically liberated from brain glycoproteins and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eleven glycans showed significantly different levels in hippocampus compared to cortex in both control and AD brain. Two glycans in cortex and four in hippocampus showed different levels in AD compared to control brain. All glycans that differed between controls and AD brain had similar structures with one sialic acid, at least one fucose and a confirmed or potential bisecting N-acetylglucosamine (GlcNAc). The glycans that were altered in AD brain differed from those that were altered in AD CSF. One glycan found to be present in significantly lower levels in both hippocampus and cortex in AD compared to control contained a structurally and functionally interesting epitope that we assign as a terminal galactose decorated with fucose and sialic acid. Altogether, these studies suggest that protein glycosylation is an important component in the development of AD and warrants further studies.


Assuntos
Doença de Alzheimer/metabolismo , Química Encefálica , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Polissacarídeos/metabolismo , Acetilglucosamina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Asparagina/metabolismo , Córtex Cerebral/química , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Epitopos , Feminino , Fucose/metabolismo , Galactose/metabolismo , Glicoproteínas/metabolismo , Hipocampo/química , Humanos , Masculino , Ácido N-Acetilneuramínico/metabolismo , Espectrometria de Massas em Tandem
4.
Chembiochem ; 22(22): 3208-3213, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34431592

RESUMO

Human induced pluripotent stem cell (hiPSC) technology has revolutionized studies on human biology. A wide range of cell types and tissue models can be derived from hiPSCs to study complex human diseases. Here, we use PiggyBac-mediated transgenesis to engineer hiPSCs with an expanded genetic code. We demonstrate that genomic integration of expression cassettes for a pyrrolysyl-tRNA synthetase (PylRS), pyrrolysyl-tRNA (PylT) and the target protein of interest enables site-specific incorporation of a non-canonical amino acid (ncAA) in response to an amber stop codon. Neural stem cells, neurons and brain organoids derived from the engineered hiPSCs continue to express the amber suppression machinery and produce ncAA-bearing reporter. The incorporated ncAA can serve as a minimal bioorthogonal handle for further modifications by labeling with fluorescent dyes. Site-directed ncAA mutagenesis will open a wide range of applications to probe and manipulate proteins in brain organoids and other hiPSC-derived cell types and complex tissue models.


Assuntos
Aminoácidos/metabolismo , Encéfalo/metabolismo , Engenharia Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , Aminoácidos/genética , Código Genético , Humanos
5.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926107

RESUMO

Amyloid ß-peptide (Aß) oligomerization is believed to contribute to the neuronal dysfunction in Alzheimer disease (AD). Despite decades of research, many details of Aß oligomerization in neurons still need to be revealed. Förster resonance energy transfer (FRET) is a simple but effective way to study molecular interactions. Here, we used a confocal microscope with a sensitive Airyscan detector for FRET detection. By live cell FRET imaging, we detected Aß42 oligomerization in primary neurons. The neurons were incubated with fluorescently labeled Aß42 in the cell culture medium for 24 h. Aß42 were internalized and oligomerized in the lysosomes/late endosomes in a concentration-dependent manner. Both the cellular uptake and intracellular oligomerization of Aß42 were significantly higher than for Aß40. These findings provide a better understanding of Aß42 oligomerization in neurons.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/fisiopatologia , Doença de Alzheimer , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide , Animais , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Células PC12 , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/diagnóstico por imagem , Ratos
6.
BMC Neurosci ; 21(1): 6, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019490

RESUMO

BACKGROUND: Synaptic degeneration and accumulation of amyloid ß-peptides (Aß) are hallmarks of the Alzheimer diseased brain. Aß is synaptotoxic and produced by sequential cleavage of the amyloid precursor protein (APP) by the ß-secretase BACE1 and by γ-secretase. If APP is instead cleaved by the α-secretase ADAM10, Aß will not be generated. Although BACE1 is considered to be a presynaptic protein and ADAM10 has been reported to mainly localize to the postsynaptic density, we have previously shown that both ADAM10 and BACE1 are highly enriched in synaptic vesicles of rat brain and mouse primary hippocampal neurons. RESULTS: Here, using brightfield proximity ligation assay, we expanded our previous result in primary neurons and investigated the in situ synaptic localization of ADAM10 and BACE1 in rat and human adult brain using both pre- and postsynaptic markers. We found that ADAM10 and BACE1 were in close proximity with both the presynaptic marker synaptophysin and the postsynaptic marker PSD-95. The substrate APP was also detected both pre- and postsynaptically. Subcellular fractionation confirmed that ADAM10 and BACE1 are enriched to a similar degree in synaptic vesicles and as well as in the postsynaptic density. CONCLUSIONS: We show that the α-secretase ADAM10 and the ß-secretase BACE1 are located in both the pre- and postsynaptic compartments in intact brain sections. These findings increase our understanding of the regulation of APP processing, thereby facilitating development of more specific treatment strategies.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Ratos Wistar , Sinaptofisina/metabolismo
7.
Mol Cell Neurosci ; 95: 86-95, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30763689

RESUMO

The normal role of Alzheimer's disease (AD)-linked amyloid precursor protein (APP) in the brain remains incompletely understood. Previous studies have reported that lack of APP has detrimental effects on spines and electrophysiological parameters. APP has been described to be important in synaptic pruning during development. The effect of APP knockout on mature synapses is complicated by this role in development. We previously reported on differential changes in synaptic proteins and receptors in APP mutant AD transgenic compared to wild-type neurons, which revealed selective decreases in levels of pre- and post-synaptic proteins, including of surface glutamate receptors. In the present study, we undertook a similar analysis of synaptic composition but now in APP knockout compared to wild-type mouse neurons. Here we demonstrate alterations in levels of selective pre- and post-synaptic proteins and receptors in APP knockout compared to wild-type mouse primary neurons in culture and brains of mice in youth and adulthood. Remarkably, we demonstrate selective increases in levels of synaptic proteins, such as GluA1, in neurons with APP knockout and with RNAi knockdown, which tended to be opposite to the reductions seen in AD transgenic APP mutant compared to wild-type neurons. These data reinforce that APP is important for the normal composition of synapses.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Neurônios/metabolismo , Sinapses/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo
8.
J Cell Mol Med ; 23(3): 2103-2114, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30663210

RESUMO

We engineered and employed a chaperone-like amyloid-binding protein Nucleobindin 1 (NUCB1) to stabilize human islet amyloid polypeptide (hIAPP) protofibrils for use as immunogen in mice. We obtained multiple monoclonal antibody (mAb) clones that were reactive against hIAPP protofibrils. A secondary screen was carried out to identify clones that cross-reacted with amyloid beta-peptide (Aß42) protofibrils, but not with Aß40 monomers. These mAbs were further characterized in several in vitro assays, in immunohistological studies of a mouse model of Alzheimer's disease (AD) and in AD patient brain tissue. We show that mAbs obtained by immunizing mice with the NUCB1-hIAPP complex cross-react with Aß42, specifically targeting protofibrils and inhibiting their further aggregation. In line with conformation-specific binding, the mAbs appear to react with an intracellular antigen in diseased tissue, but not with amyloid plaques. We hypothesize that the mAbs we describe here recognize a secondary or quaternary structural epitope that is common to multiple amyloid protofibrils. In summary, we report a method to create mAbs that are conformation-sensitive and sequence-independent and can target more than one type of protofibril species.


Assuntos
Peptídeos beta-Amiloides/imunologia , Amiloide/imunologia , Anticorpos Monoclonais/imunologia , Fragmentos de Peptídeos/imunologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/imunologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Camundongos , Nucleobindinas/imunologia , Nucleobindinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Células Piramidais/imunologia , Células Piramidais/metabolismo
9.
Exp Cell Res ; 371(1): 175-184, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30092220

RESUMO

Alzheimer's disease (AD) is characterized by early degeneration of cholinergic neurons and decreased levels of nerve growth factor (NGF). Thus, increasing the NGF levels by for instance encapsulated cell bio-delivery (ECB) is a potential treatment strategy. The results from our previous first-in-human studies on ECB of NGF to the basal forebrain cholinergic neurons were promising, but indicated some variability of long-term viability of the encapsulated cells and associated reduced NGF-release. Here we studied the effect of amyloid beta-peptides (Aß), interleukin 1-beta (IL-1ß), and CSF from AD, Lewy body dementia (LBD) or subjective cognitive impairment (SCI) patients on the NGF overproducing cell line NGC-0295. At physiological concentrations, neither Aß40 nor Aß42 had any major impact on cell viability or NGF-production. In contrast, IL-1ß dose-dependently affected NGF-production over time. Exposure of NGF-producing cells to CSF from AD patients showed significantly reduced NGF-release as compared to CSF from LBD or SCI patients. By mass spectrometry we found 3 proteins involved in inflammatory pathways to have an altered expression in AD CSF compared to LBD and SCI. Cell survival and NGF-release were not affected by Aß. NGF-release was affected by IL-1ß, suggesting that inflammation has a negative effect on ECB cells.


Assuntos
Doença de Alzheimer/genética , Líquido Cefalorraquidiano/química , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/farmacologia , Fator de Crescimento Neural/genética , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Doença por Corpos de Lewy/líquido cefalorraquidiano , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/patologia , Fator de Crescimento Neural/metabolismo , Fragmentos de Peptídeos/farmacologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Estaurosporina/farmacologia
10.
Biochem Biophys Res Commun ; 483(1): 352-358, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28017718

RESUMO

The toxic amyloid ß-peptide (Aß) is a key player in Alzheimer Disease (AD) pathogenesis and selective inhibition of the production of this peptide is sought for. Aß is produced by the sequential cleavage of the Aß precursor protein (APP) by ß-secretase (to yield APP-C-terminal fragment ß (APP-CTFß) and soluble APPß (sAPPß)) and γ-secretase (to yield Aß). We reasoned that proteins that associate with γ-secretase are likely to regulate Aß production and to be targets of pharmaceutical interventions and therefore performed a pull-down assay to screen for such proteins in rat brain. Interestingly, one of the purified proteins was potassium/sodium hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2), which has been shown to be involved in epilepsy. We found that silencing of HCN2 resulted in decreased secreted Aß levels. To further investigate the mechanism behind this reduction, we also determined the levels of full-length APP, sAPP and APP-CTF species after silencing of HCN2. A marked reduction in sAPP and APP-CTF, as well as glycosylated APP levels was detected. Decreased Aß, sAPP and APP-CTF levels were also detected after treatment with the HCN2 inhibitor ZD7288. These results indicate that the effect on Aß levels after HCN2 silencing or inhibition is due to altered APP maturation or processing by ß-secretase rather than a direct effect on γ-secretase. However, HCN2 and γ-secretase were found to be in close proximity, as evident by proximity ligation assay and immunoprecipitation. In summary, our results indicate that silencing or inhibition of HCN2 affects APP processing and thereby could serve as a potential treatment strategy.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Potássio/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Epilepsia/metabolismo , Feminino , Inativação Gênica , Glicosilação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Pirimidinas/química , Ratos , Ratos Sprague-Dawley
11.
Proteomics ; 15(19): 3349-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26194619

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease displaying extracellular plaques formed by the neurotoxic amyloid ß-peptide (Aß), and intracellular neurofibrillary tangles consisting of protein tau. However, how these pathologies relate to the massive neuronal death that occurs in AD brains remain elusive. Neprilysin is the major Aß-degrading enzyme and a lack thereof increases Aß levels in the brain twofold. To identify altered protein expression levels induced by increased Aß levels, we performed a proteomic analysis of the brain of the AD mouse model APPsw and compared it to that of APPsw mice lacking neprilysin. To this end we established an LC-MS/MS method to analyze brain homogenate, using an (18) O-labeled internal standard to accurately quantify the protein levels. To distinguish between alterations in protein levels caused by increased Aß levels and those induced by neprilysin deficiency independently of Aß, the brain proteome of neprilysin deficient APPsw mice was also compared to that of neprilysin deficient mice. By this approach we identified approximately 600 proteins and the levels of 300 of these were quantified. Pathway analysis showed that many of the proteins with altered expression were involved in neurological disorders, and that tau, presenilin and APP were key regulators in the identified networks. The data have been deposited to the ProteomeXchange Consortium with identifiers PXD000968 and PXD001786 (http://proteomecentral.proteomexchange.org/dataset/PXD000968 and (http://proteomecentral.proteomexchange.org/dataset/PXD001786). Interestingly, the levels of several proteins, including some not previously reported to be linked to AD, were associated with increased Aß levels.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Neprilisina/genética , Proteínas/genética , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/fisiopatologia , Cromatografia Líquida , Modelos Animais de Doenças , Deleção de Genes , Camundongos , Proteínas/análise , Proteômica , Espectrometria de Massas em Tandem
12.
J Neurochem ; 135(3): 606-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26296617

RESUMO

Synaptic degeneration and accumulation of the neurotoxic amyloid ß-peptide (Aß) in the brain are hallmarks of Alzheimer disease. Aß is produced by sequential cleavage of the amyloid precursor protein (APP), by the ß-secretase ß-site APP cleaving enzyme 1 (BACE1) and γ-secretase. However, Aß generation is precluded if APP is cleaved by the α-secretase ADAM10 instead of BACE1. We have previously shown that Aß can be produced locally at the synapse. To study the synaptic localization of the APP processing enzymes we used western blotting to demonstrate that, compared to total brain homogenate, ADAM10 and BACE1 were greatly enriched in synaptic vesicles isolated from rat brain using controlled-pore glass chromatography, whereas Presenilin1 was the only enriched component of the γ-secretase complex. Moreover, we detected ADAM10 activity in synaptic vesicles and enrichment of the intermediate APP-C-terminal fragments (APP-CTFs). We confirmed the western blotting findings using in situ proximity ligation assay to demonstrate close proximity of ADAM10 and BACE1 with the synaptic vesicle marker synaptophysin in intact mouse primary hippocampal neurons. In contrast, only sparse co-localization of active γ-secretase and synaptophysin was detected. These results indicate that the first step of APP processing occurs in synaptic vesicles whereas the final step is more likely to take place elsewhere.


Assuntos
Proteínas ADAM/análise , Secretases da Proteína Precursora do Amiloide/análise , Ácido Aspártico Endopeptidases/análise , Proteínas de Membrana/análise , Vesículas Sinápticas/química , Proteína ADAM10 , Animais , Células Cultivadas , Hipocampo/química , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos
13.
J Biol Chem ; 287(15): 11991-2005, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22315232

RESUMO

In Alzheimer disease, oligomeric amyloid ß-peptide (Aß) species lead to synapse loss and neuronal death. γ-Secretase, the transmembrane protease complex that mediates the final catalytic step that liberates Aß from its precursor protein (APP), has a multitude of substrates, and therapeutics aimed at reducing Aß production should ideally be specific for APP cleavage. It has been shown that APP can be processed in lipid rafts, and γ-secretase-associated proteins can affect Aß production. Here, we use a biotinylated inhibitor for affinity purification of γ-secretase and associated proteins and mass spectrometry for identification of the purified proteins, and we identify novel γ-secretase-associated proteins in detergent-resistant membranes from brain. Furthermore, we show by small interfering RNA-mediated knockdown of gene expression that a subset of the γ-secretase-associated proteins, in particular voltage-dependent anion channel 1 (VDAC1) and contactin-associated protein 1 (CNTNAP1), reduced Aß production (Aß40 and Aß42) by around 70%, whereas knockdown of presenilin 1, one of the essential γ-secretase complex components, reduced Aß production by 50%. Importantly, these proteins had a less pronounced effect on Notch processing. We conclude that VDAC1 and CNTNAP1 associate with γ-secretase in detergent-resistant membranes and affect APP processing and suggest that molecules that interfere with this interaction could be of therapeutic use for Alzheimer disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Microdomínios da Membrana/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/isolamento & purificação , Peptídeos beta-Amiloides/biossíntese , Animais , Encéfalo/enzimologia , Moléculas de Adesão Celular Neuronais/genética , Cromatografia de Afinidade , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Presenilina-1/genética , Presenilina-1/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores Notch/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Espectrometria de Massas em Tandem , Canal de Ânion 1 Dependente de Voltagem/genética
14.
J Cell Mol Med ; 16(8): 1686-700, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21883897

RESUMO

It is evident that the symptoms of Alzheimer's disease (AD) are derived from severe neuronal damage, and especially pyramidal neurons in the hippocampus are affected pathologically. Here, we analysed the proteome of hippocampal neurons, isolated from post-mortem brains by laser capture microdissection. By using (18)O labelling and mass spectrometry, the relative expression levels of 150 proteins in AD and controls were estimated. Many of the identified proteins are involved in transcription and nucleotide binding, glycolysis, heat-shock response, microtubule stabilization, axonal transport or inflammation. The proteins showing the most altered expression in AD were selected for immunohistochemical analysis. These analyses confirmed the altered expression levels, and showed in many AD cases a pathological pattern. For comparison, we also analysed hippocampal sections by Western blot. The expression levels found by this method showed poor correlation with the neuron-specific analysis. Hence, we conclude that cell-specific proteome analysis reveals differences in the proteome that cannot be detected by bulk analysis.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Microdissecção e Captura a Laser , Espectrometria de Massas/métodos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Western Blotting , Estudos de Casos e Controles , Demografia , Regulação para Baixo , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Imuno-Histoquímica , Marcação por Isótopo , Masculino , Microglia/metabolismo , Dados de Sequência Molecular , Isótopos de Oxigênio , Peptídeos/química , Peptídeos/metabolismo , Proteoma/metabolismo , Células Piramidais/metabolismo , Células Piramidais/patologia , Tripsina/metabolismo , Regulação para Cima
15.
J Biol Chem ; 286(36): 31153-8, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21768095

RESUMO

The γ-secretase complex is responsible for intramembrane processing of over 60 substrates and is involved in Notch signaling as well as in the generation of the amyloid ß-peptide (Aß). Aggregated forms of Aß have a pathogenic role in Alzheimer disease and, thus, reducing the Aß levels by inhibiting γ-secretase is a possible treatment strategy for Alzheimer disease. Regrettably, clinical trials have shown that inhibition of γ-secretase results in Notch-related side effects. Therefore, it is of great importance to find ways to inhibit amyloid precursor protein (APP) processing without disturbing vital signaling pathways such as Notch. Nicastrin (Nct) is part of the γ-secretase complex and has been proposed to be involved in substrate recognition and selection. We have investigated how the four evenly spaced and conserved cysteine residues in the Nct ectodomain affect APP and Notch processing. We mutated these cysteines to serines and analyzed them in cells lacking endogenous Nct. We found that two mutants, C213S (C2) and C230S (C3), differentially affected APP and Notch processing. Both the formation of Aß and the intracellular domain of amyloid precursor protein (AICD) were reduced, whereas the production of Notch intracellular domain (NICD) was maintained on a high level, although C230S (C3) showed impaired complex assembly. Our data demonstrate that single residues in a γ-secretase component besides presenilin are able to differentially affect APP and Notch processing.


Assuntos
Secretases da Proteína Precursora do Amiloide/fisiologia , Peptídeos beta-Amiloides/biossíntese , Glicoproteínas de Membrana/fisiologia , Mutação , Receptores Notch/metabolismo , Doença de Alzheimer/tratamento farmacológico , Substituição de Aminoácidos , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Células Cultivadas , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
16.
Biochem Biophys Res Commun ; 424(3): 476-81, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22771797

RESUMO

The transmembrane protease complex γ-secretase is responsible for the generation of the neurotoxic amyloid ß-peptide (Aß) from its precursor (APP). Aß has a causative role in Alzheimer disease, and thus, γ-secretase is a therapeutic target. However, since there are more than 70 γ-secretase substrates besides APP, selective inhibition of APP processing is required. Recent data indicates the existence of several γ-secretase associated proteins (GSAPs) that affect the selection and processing of substrates. Here, we use a γ-secretase inhibitor for affinity purification of γ-secretase and associated proteins from microsomes and detergent resistant membranes (DRMs) prepared from rat or human brain. By tandem mass spectrometry we identified a novel brain GSAP; erlin-2. This protein was recently reported to reside in DRMs in the ER. A proximity ligation assay, as well as co-immunoprecipitation, confirmed the association of erlin-2 with γ-secretase. We found that a higher proportion of erlin-2 was associated with γ-secretase in DRMs than in soluble membranes. siRNA experiments indicated that reduced levels of erlin-2 resulted in a decreased Aß production, whereas the effect on Notch processing was limited. In summary, we have found a novel brain GSAP, erlin-2, that resides in DRMs and affects Aß production.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/biossíntese , Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos , Proteínas de Membrana/genética , Camundongos , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley
17.
Alzheimers Res Ther ; 14(1): 196, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36578089

RESUMO

BACKGROUND: In Alzheimer's disease (AD), amyloid-ß 1-42 (Aß42) neurotoxicity stems mostly from its soluble oligomeric aggregates. Studies of such aggregates have been hampered by the lack of oligomer-specific research tools and their intrinsic instability and heterogeneity. Here, we developed a monoclonal antibody with a unique oligomer-specific binding profile (ALZ-201) using oligomer-stabilising technology. Subsequently, we assessed the etiological relevance of the Aß targeted by ALZ-201 on physiologically derived, toxic Aß using extracts from post-mortem brains of AD patients and controls in primary mouse neuron cultures. METHODS: Mice were immunised with stable oligomers derived from the Aß42 peptide with A21C/A30C mutations (AßCC), and ALZ-201 was developed using hybridoma technology. Specificity for the oligomeric form of the Aß42CC antigen and Aß42 was confirmed using ELISA, and non-reactivity against plaques by immunohistochemistry (IHC). The antibody's potential for cross-protective activity against pathological Aß was evaluated in brain tissue samples from 10 individuals confirmed as AD (n=7) and non-AD (n=3) with IHC staining for Aß and phosphorylated tau (p-Tau) aggregates. Brain extracts were prepared and immunodepleted using the positive control 4G8 antibody, ALZ-201 or an isotype control to ALZ-201. Fractions were biochemically characterised, and toxicity assays were performed in primary mouse neuronal cultures using automated high-content microscopy. RESULTS: AD brain extracts proved to be more toxic than controls as demonstrated by neuronal loss and morphological determinants (e.g. synapse density and measures of neurite complexity). Immunodepletion using 4G8 reduced Aß levels in both AD and control samples compared to ALZ-201 or the isotype control, which showed no significant difference. Importantly, despite the differential effect on the total Aß content, the neuroprotective effects of 4G8 and ALZ-201 immunodepletion were similar, whereas the isotype control showed no effect. CONCLUSIONS: ALZ-201 depletes a toxic species in post-mortem AD brain extracts causing a positive physiological and protective impact on the integrity and morphology of mouse neurons. Its unique specificity indicates that a low-abundant, soluble Aß42 oligomer may account for much of the neurotoxicity in AD. This critical attribute identifies the potential of ALZ-201 as a novel drug candidate for achieving a true, clinical therapeutic effect in AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Fragmentos de Peptídeos/metabolismo , Encéfalo/metabolismo , Anticorpos Monoclonais/uso terapêutico
18.
J Cell Mol Med ; 15(10): 2150-63, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21054783

RESUMO

Markers for caspase activation and apoptosis have been shown in brains of Alzheimer's disease (AD) patients and AD-mouse models. In neurons, caspase activation is associated with elevated amyloid ß-peptide (Aß) production. Caspases cleave numerous substrates including presenilin-1 (PS1). The cleavage takes place in the large cytosolic loop of PS1-C-terminal fragment (PS1CTF), generating a truncated PS1CTF lacking half of the loop domain (caspCTF). The loop has been shown to possess important regulatory functions with regard to Aß(40) and Aß(42) production. Previously, we have demonstrated that γ-secretase complexes are active during apoptosis regardless of caspase cleavage in the PS1CTF-loop. Here, a PS1/PS2-knockout mouse blastocyst-derived cell line was used to establish stable or transient cell lines expressing either caspCTF or full-length CTF (wtCTF). We show that caspCTF restores γ-secretase activity and forms active γ-secretase complexes together with Nicastrin, Pen-2, Aph-1 and PS1-N-terminal fragment. Further, caspCTF containing γ-secretase complexes have a sustained capacity to cleave amyloid precursor protein (APP) and Notch, generating APP and Notch intracellular domain, respectively. However, when compared to wtCTF cells, caspCTF cells exhibit increased intracellular production of Aß(42) accompanied by increased intracellular Aß(42) /Aß(40) ratio without changing the Aß secretion pattern. Similarly, induction of apoptosis in wtCTF cells generate a similar shift in intracellular Aß pattern with increased Aß(42) /Aß(40) ratio. In summary, we show that caspase cleavage of PS1 generates a γ-secretase complex that increases the intracellular Aß(42) /Aß(40) ratio. This can have implications for AD pathogenesis and suggests caspase inhibitors as potential therapeutic agents.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Presenilina-1/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Animais , Apoptose , Caspases/genética , Caspases/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Presenilina-1/genética , Transdução de Sinais , Trissacarídeos/genética , Trissacarídeos/metabolismo
19.
Biomolecules ; 11(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207636

RESUMO

Proteomics-large-scale studies of proteins-has over the last decade gained an enormous interest for studies aimed at revealing proteins and pathways involved in disease. To fully understand biological and pathological processes it is crucial to also include post-translational modifications in the "omics". To this end, glycomics (identification and quantification of glycans enzymatically or chemically released from proteins) and glycoproteomics (identification and quantification of peptides/proteins with the glycans still attached) is gaining interest. The study of protein glycosylation requires a workflow that involves an array of sample preparation and analysis steps that needs to be carefully considered. Herein, we briefly touch upon important steps such as sample preparation and preconcentration, glycan release, glycan derivatization and quantification and advances in mass spectrometry that today are the work-horse for glycomics and glycoproteomics studies. Several proteins related to Alzheimer disease pathogenesis have altered protein glycosylation, and recent glycomics studies have shown differences in cerebrospinal fluid as well as in brain tissue in Alzheimer disease as compared to controls. In this review, we discuss these techniques and how they have been used to shed light on Alzheimer disease and to find glycan biomarkers in cerebrospinal fluid.


Assuntos
Doença de Alzheimer/metabolismo , Glicoproteínas/análise , Polissacarídeos/análise , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Líquido Cefalorraquidiano/química , Líquido Cefalorraquidiano/metabolismo , Cromatografia Líquida/métodos , Glicômica/métodos , Glicoproteínas/líquido cefalorraquidiano , Glicoproteínas/metabolismo , Glicosilação , Humanos , Polissacarídeos/líquido cefalorraquidiano , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
20.
Biomedicines ; 9(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34356865

RESUMO

Alzheimer's disease (AD) is the most common type of dementia, contributing to 60-80% of cases. It is a neurodegenerative disease that usually starts symptomless in the first two to three decades and then propagates into a long-term, irreversible disease, resulting in the progressive loss of memory, reasoning, abstraction and language capabilities. It is a complex disease, involving a large number of entangled players, and there is no effective treatment to cure it or alter its progressive course. Therefore, a thorough understanding of the disease pathology and an early diagnosis are both necessary. AD has two significant pathological hallmarks: extracellular senile plaques composed of amyloid ß-peptide (Aß) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein, and the aggregation of Aß, which starts in earlier stages, is usually claimed to be the primary cause of AD. Secretases that cleave Aß precursor protein (APP) and produce neurotoxic Aß reside in distinct organelles of the cell, and current concepts suggest that APP moves between distinct intracellular compartments. Obviously, APP transport and processing are intimately related processes that cannot be dissociated from each other, and, thus, how and where APP is transported determines its processing fate. In this review, we summarize critical mechanisms underlying neuronal APP transport, which we divide into separate parts: (1) secretory pathways and (2) endocytic and autophagic pathways. We also include two lipoprotein receptors that play essential roles in APP transport: sorting-related receptor with A-type repeats and sortilin. Moreover, we consider here some major disruptions in the neuronal transport of APP that contribute to AD physiology and pathology. Lastly, we discuss current methods and technical difficulties in the studies of APP transport.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa