RESUMO
Chaotic systems are hard to synchronize, and no general solution exists. The presence of hidden attractors makes finding a solution particularly elusive. Successful synchronization critically depends on the control strategy, which must be carefully chosen considering system features such as the presence of hidden attractors. We studied the feasibility of fuzzy control for synchronizing chaotic systems with hidden attractors and employed a special numerical integration method that takes advantage of the oscillatory characteristic of chaotic systems. We hypothesized that fuzzy synchronization and the chosen numerical integration method can successfully deal with this case of synchronization. We tested two synchronization schemes: complete synchronization, which leverages linearization, and projective synchronization, capitalizing on parallel distributed compensation (PDC). We applied the proposal to a set of known chaotic systems of integer order with hidden attractors. Our results indicated that fuzzy control strategies combined with the special numerical integration method are effective tools to synchronize chaotic systems with hidden attractors. In addition, for projective synchronization, we propose a new strategy to optimize error convergence. Furthermore, we tested and compared different Takagi-Sugeno (T-S) fuzzy models obtained by tensor product (TP) model transformation. We found an effect of the fuzzy model of the chaotic system on the synchronization performance.
RESUMO
Chaotic systems implemented by artificial neural networks are good candidates for data encryption. In this manner, this paper introduces the cryptographic application of the Hopfield and the Hindmarsh-Rose neurons. The contribution is focused on finding suitable coefficient values of the neurons to generate robust random binary sequences that can be used in image encryption. This task is performed by evaluating the bifurcation diagrams from which one chooses appropriate coefficient values of the mathematical models that produce high positive Lyapunov exponent and Kaplan-Yorke dimension values, which are computed using TISEAN. The randomness of both the Hopfield and the Hindmarsh-Rose neurons is evaluated from chaotic time series data by performing National Institute of Standard and Technology (NIST) tests. The implementation of both neurons is done using field-programmable gate arrays whose architectures are used to develop an encryption system for RGB images. The success of the encryption system is confirmed by performing correlation, histogram, variance, entropy, and Number of Pixel Change Rate (NPCR) tests.
RESUMO
A rare three-dimensional chaotic system with all eigenvalues equal to zero is proposed, and its dynamical properties are investigated. The chaotic system has one equilibrium point at the origin. Numerical analysis shows that the equilibrium point is unstable. Bifurcation analysis of the system shows various dynamics in a period-doubling route to chaos. We highlight that from the evaluation of the entropy, bifurcation points can be predicted by identifying early warning signals. In this manner, bifurcation points of the system are analyzed using Shannon and Kolmogorov-Sinai entropy. The results are compared with Lyapunov exponents.
RESUMO
The design of a remotely operated vehicle (ROV) with a size of 18.41 cm × 29.50 cm × 33.50 cm, and a weight of 15.64 kg, is introduced herein. The main goal is to capture underwater video by remote control communication in real time via Ethernet protocol. The ROV moves under the six brushless motors governed through a smart PID controller (Proportional + Integral + Derivative) and by using pulse-wide modulation with short pulses of 1 µs to improve the stability of the position in relation to the translational, ascent or descent, and rotational movements on three axes to capture images of 800 × 640 pixels on a video graphic array standard. The motion control, 3D position, temperature sensing, and video capture are performed at the same time, exploiting the four cores of the Raspberry Pi 3, using the threading library for parallel computing. In such a way, experimental results show that the video capture stage can process up to 42 frames per second on a Raspberry Pi 3. The remote control of the ROV is executed under a graphical user interface developed in Python, which is suitable for different operating systems, such as GNU/Linux, Windows, Android, and OS X. The proposed ROV can reach up to 100 m underwater, thus solving the issue of divers who can only reach 30 m depth. In addition, the proposed ROV can be useful in underwater applications such as surveillance, operations, maintenance, and measurement.
RESUMO
Profiling and parallel computing techniques in a cluster of six embedded systems with multiprocessors are introduced herein to implement a chaotic cryptosystem for digital color images. The proposed encryption method is based on stream encryption using a pseudo-random number generator with high-precision arithmetic and data processing in parallel with collective communication. The profiling and parallel computing techniques allow discovery of the optimal number of processors that are necessary to improve the efficiency of the cryptosystem. That is, the processing speed improves the time for generating chaotic sequences and execution of the encryption algorithm. In addition, the high numerical precision reduces the digital degradation in a chaotic system and increases the security levels of the cryptosystem. The security analysis confirms that the proposed cryptosystem is secure and robust against different attacks that have been widely reported in the literature. Accordingly, we highlight that the proposed encryption method is potentially feasible to be implemented in practical applications, such as modern telecommunication devices employing multiprocessors, e.g., smart phones, tablets, and in any embedded system with multi-core hardware.
RESUMO
Nowadays, different kinds of experimental realizations of chaotic oscillators have been already presented in the literature. However, those realizations do not consider the value of the maximum Lyapunov exponent, which gives a quantitative measure of the grade of unpredictability of chaotic systems. That way, this paper shows the experimental realization of an optimized multiscroll chaotic oscillator based on saturated function series. First, from the mathematical description having four coefficients (a, b, c, d1 ), an optimization evolutionary algorithm varies them to maximize the value of the positive Lyapunov exponent. Second, a realization of those optimized coefficients using operational amplifiers is given. Herein a, b, c, d1 are implemented with precision potentiometers to tune up to four decimals of the coefficients having the range between 0.0001 and 1.0000. Finally, experimental results of the phase-space portraits for generating from 2 to 10 scrolls are listed to show that their associated value for the optimal maximum Lyapunov exponent increases by increasing the number of scrolls, thus guaranteeing a more complex chaotic behavior.
Assuntos
Dinâmica não Linear , Oscilometria/métodos , Algoritmos , Eletrônica/métodos , Modelos TeóricosRESUMO
This article presents a technique to integrate two dynamical models, a four-wing spherical chaotic oscillator and the elliptical path described by the planet Earth during its translation movement around the sun. Four application cases are derived from the system by varying the dynamics of the chaotic oscillator and these can be applied in information encryption to transmit RGB and grayscale images modulated by CSK. Consequently, the three main contributions of this work are (1) the emulation of the trajectories of the planet Earth with chaotic interference, (2) the CSK modulation and image encryption in a master-slave synchronization topology, and (3) the CSK demodulation for decryption without loss of information with respect to the original information. The three contributions are based on VHDL code implementation. The results of the synchronization, encryption and decryption technique were verified by means of time series and the encrypted images showed a correlation less than - 0.000142 and - 0.0003439 for RGB and grayscale format, respectively, while the retrieved image shows a complete correlation with the image original. In this work, the co-simulations were performed between MATLAB/Simulink and Vivado, using the VHDL language on two FPGA boards from different manufacturers, namely, Xilinx Artix-7 AC701 and Intel Cyclone IV.
RESUMO
Artificial neural networks have demonstrated to be very useful in solving problems in artificial intelligence. However, in most cases, ANNs are considered integer-order models, limiting the possible applications in recent engineering problems. In addition, when dealing with fractional-order neural networks, almost any work shows cases when varying the fractional order. In this manner, we introduce the optimization of a fractional-order neural network by applying metaheuristics, namely: differential evolution (DE) and accelerated particle swarm optimization (APSO) algorithms. The case study is a chaotic cellular neural network (CNN), for which the main goal is generating fractional orders of the neurons whose Kaplan-Yorke dimension is being maximized. We propose a method based on Fourier transform to evaluate if the generated time series is chaotic or not. The solutions that do not have chaotic behavior are not passed to the time series analysis (TISEAN) software, thus saving execution time. We show the best solutions provided by DE and APSO of the attractors of the fractional-order chaotic CNNs.
RESUMO
Viability of a fractional-order proportional-integral-derivative (PID) approximation to regulate voltage in buck-boost converters is investigated. The converter applications range not only to high-power ones but also in micro/nano-scale systems from biomedicine for energy management/harvesting. Using a classic closed-loop control diagram the controller effectiveness is determined. Fractional calculus is considered due to its ability at modeling different types of systems accurately. The non-integer approach is integrated into the control strategy through a Laplacian operator biquadratic approximation to generate a flat phase curve in the system closed-loop frequency response. The controller synthesis considers both robustness and closed-loop performance to ensure a fast and stable regulation characteristic. A simple tuning method provides the appropriate gains to meet design requirements. The superiority of proposed approach, determined by comparing the obtained time constants with those from typical PID controllers, confirms it as alternative to controller non-minimum phases systems. Experimental realization of the resulting controller, implemented through resistor-capacitor (RC) circuits and operational amplifiers (OPAMPs) in adder configuration, confirms its effectiveness and viability.
RESUMO
Fractional-order chaotic oscillators (FOCOs) have been widely studied during the last decade, and some of them have been implemented on embedded hardware like field-programmable gate arrays, which is a good option for fast prototyping and verification of the desired behavior. However, the hardware resources are dependent on the length of the digital word that is used, and this can degrade the desired response due to the finite number of bits to perform computer arithmetic. In this manner, this paper shows the implementation of FOCOs using analog electronics to generate continuous-time chaotic behavior. Charef's method is applied to approximate the fractional-order derivatives as a ratio of two polynomials in the Laplace domain. For instance, two commensurate FOCOs are the cases of study herein, for which we show their dynamical analysis by evaluating their equilibrium points and eigenvalues that are used to estimate the minimum fractional-order that guarantees their chaotic behavior. We propose the use of first-order all-pass and low-pass filters to design the ratio of the polynomials that approximate the fractional-order. The filters are implemented using amplifiers and synthesized on a field-programmable analog array (FPAA) device. Experimental results are in good agreement with simulation results thus demonstrating the usefulness of FPAAs to generate continuous-time chaotic behavior, and to allow reprogramming of the parameters of the FOCOs.
RESUMO
Synchronizing chaotic oscillators has been a challenge to guarantee successful applications in secure communications. That way, three synchronization techniques are applied herein to twenty two chaotic oscillators, three of them based on piecewise-linear functions and nineteen proposed by Julien C. Sprott. These chaotic oscillators are simulated to generate chaotic time series that are used to evaluate their Lyapunov exponents and Kaplan-Yorke dimension to rank their unpredictability. The oscillators with the high positive Lyapunov exponent are implemented into a field-programmable gate array (FPGA), and afterwards they are synchronized in a master-slave topology applying three techniques: the seminal work introduced by Pecora-Carroll, Hamiltonian forms and observer approach, and open-plus-closed-loop (OPCL). These techniques are compared with respect to their synchronization error and latency that is associated to the FPGA implementation. Finally, the chaotic oscillators providing the high positive Lyapunov exponent are synchronized and applied to a communication system with chaotic masking to perform a secure image transmission. Correlation analysis is performed among the original image, the chaotic channel and the recovered image for the three synchronization schemes. The experimental results show that both Hamiltonian forms and OPCL can recover the original image and its correlation with the chaotic channel is as low as 0.00002, demonstrating the advantage of synchronizing chaotic oscillators with high positive Lyapunov exponent to guarantee high security in data transmission.
Assuntos
Oscilometria/métodos , Comunicação , Simulação por Computador , Modelos Teóricos , Fatores de TempoRESUMO
Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors.