Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 82(19): 5741-55, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422841

RESUMO

UNLABELLED: It has been suggested that iron is one of the most important energy sources for photosynthesis-independent microbial ecosystems in the ocean crust. Iron-metabolizing chemolithoautotrophs play a key role as primary producers, but little is known about their distribution and diversity and their ecological role as submarine iron-metabolizing chemolithotrophs, particularly the iron oxidizers. In this study, we investigated the microbial communities in several iron-dominated flocculent mats found in deep-sea hydrothermal fields in the Mariana Volcanic Arc and Trough and the Okinawa Trough by culture-independent molecular techniques and X-ray mineralogical analyses. The abundance and composition of the 16S rRNA gene phylotypes demonstrated the ubiquity of zetaproteobacterial phylotypes in iron-dominated mat communities affected by hydrothermal fluid input. Electron microscopy with energy-dispersive X-ray microanalysis and X-ray absorption fine structure (XAFS) analysis revealed the chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species and the potential contribution of Zetaproteobacteria to the in situ generation. These results suggest that putative iron-oxidizing chemolithoautotrophs play a significant ecological role in producing iron-dominated flocculent mats and that they are important for iron and carbon cycles in deep-sea low-temperature hydrothermal environments. IMPORTANCE: We report novel aspects of microbiology from iron-dominated flocculent mats in various deep-sea environments. In this study, we examined the relationship between Zetaproteobacteria and iron oxides across several hydrothermally influenced sites in the deep sea. We analyzed iron-dominated mats using culture-independent molecular techniques and X-ray mineralogical analyses. The scanning electron microscopy-energy-dispersive X-ray spectroscopy SEM-EDS analysis and X-ray absorption fine structure (XAFS) analysis revealed chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species as well as the potential contribution of the zetaproteobacterial population to the in situ production. These key findings provide important information for understanding the mechanisms of both geomicrobiological iron cycling and the formation of iron-dominated mats in deep-sea hydrothermal fields.


Assuntos
Compostos Férricos/metabolismo , Fontes Hidrotermais/microbiologia , Ferro/metabolismo , Proteobactérias/classificação , Microbiota , Oxirredução , Oceano Pacífico , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Espectroscopia por Absorção de Raios X
2.
Sci Rep ; 13(1): 5051, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024563

RESUMO

The helium isotope ratio (3He/4He), concentration ratio of neon-20 to helium-4 (20Ne/4He), argon (Ar), krypton (Kr), and xenon (Xe) concentrations were measured in the porewater of surface sediments of several submarine mud volcanoes. From the 3He/4He values (0.18-0.93RA), the estimated He origin is almost 90% crustal He, with little contribution from mantle-derived He. The determined Ar, Kr, and Xe concentrations lie within the solubility equilibrium range expected for temperatures from 83 °C up to 230 °C and are consistent with the temperature range of the dehydration origin of clay minerals. Considering the geothermal gradient in the investigated region (25 °C/km), these gases are considered to have reached dissolution equilibrium at a depth of about 3.3 km to 9.2 km below the seafloor. As the depth of the plate boundary is 18 km below the seafloor, the noble gas signatures are likely to originate from the crust, not from the plate boundary. This is consistent with the results presented by the He isotope ratios.

3.
Appl Environ Microbiol ; 78(5): 1311-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22210205

RESUMO

Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Adesão Celular , Fontes Hidrotermais/microbiologia , Fontes Hidrotermais/virologia , Plâncton/virologia , Vírus/isolamento & purificação , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biota , Contagem de Células , Análise por Conglomerados , Metagenoma , Dados de Sequência Molecular , Filogenia , Água do Mar/microbiologia , Água do Mar/virologia , Análise de Sequência de DNA , Carga Viral , Vírus/classificação , Vírus/genética
4.
Extremophiles ; 16(2): 245-53, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22212657

RESUMO

A novel heterotrophic, thermophilic bacterium, designated strain AC55(T), was isolated from a deep-sea hydrothermal vent chimney at the Hatoma Knoll in the Okinawa Trough, Japan. Cells of strain AC55(T) were non-motile, long rods (2.0- to 6.8-µm long and 0.3- to 0.6-µm wide). The strain was an obligatory anaerobic heterotroph capable of fermentative growth on complex proteinaceous substances. Elemental sulfur was reduced to hydrogen sulfide but did not stimulate growth. Growth was observed between 37 and 60°C (optimum 55°C), pH 5.5 and 8.5 (optimum pH 6.6), and in the presence of 1.5-4.5% (w/v) NaCl (optimum 2.5%, w/v). Menaquinone-7 and -8 were the major respiratory quinones. The G + C content of the genomic DNA from strain AC55(T) was 51.6 mol%. The 16S rRNA gene sequence analysis revealed that strain AC55(T) was the first cultivated representative of Acidobacteria subdivision 10. Based on the physiological and phylogenetic features of the novel isolate, the genus name Thermotomaculum gen. nov. is proposed, with Thermotomaculum hydrothermale sp. nov. as the type species. The type strain is AC55(T) (=JCM 17643(T) = DSM 24660(T) = NBRC 107904(T)).


Assuntos
Acidobacteria/genética , Acidobacteria/metabolismo , Regulação Bacteriana da Expressão Gênica , Composição de Bases , DNA/química , DNA Bacteriano/genética , Fermentação , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Fontes Hidrotermais , Japão , Funções Verossimilhança , Lipídeos/química , Microscopia/métodos , Microscopia Eletrônica/métodos , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Cloreto de Sódio/química , Temperatura , Vitamina K 2/química
5.
Proc Natl Acad Sci U S A ; 105(31): 10949-54, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18664583

RESUMO

We have developed a technique for cultivation of chemolithoautotrophs under high hydrostatic pressures that is successfully applicable to various types of deep-sea chemolithoautotrophs, including methanogens. It is based on a glass-syringe-sealing liquid medium and gas mixture used in conjunction with a butyl rubber piston and a metallic needle stuck into butyl rubber. By using this technique, growth, survival, and methane production of a newly isolated, hyperthermophilic methanogen Methanopyrus kandleri strain 116 are characterized under high temperatures and hydrostatic pressures. Elevated hydrostatic pressures extend the temperature maximum for possible cell proliferation from 116 degrees C at 0.4 MPa to 122 degrees C at 20 MPa, providing the potential for growth even at 122 degrees C under an in situ high pressure. In addition, piezophilic growth significantly affected stable carbon isotope fractionation of methanogenesis from CO(2). Under conventional growth conditions, the isotope fractionation of methanogenesis by M. kandleri strain 116 was similar to values (-34 per thousand to -27 per thousand) previously reported for other hydrogenotrophic methanogens. However, under high hydrostatic pressures, the isotope fractionation effect became much smaller (< -12 per thousand), and the kinetic isotope effect at 122 degrees C and 40 MPa was -9.4 per thousand, which is one of the smallest effects ever reported. This observation will shed light on the sources and production mechanisms of deep-sea methane.


Assuntos
Técnicas de Cultura de Células/métodos , Euryarchaeota/crescimento & desenvolvimento , Metano/biossíntese , Temperatura , Sequência de Bases , Isótopos de Carbono/análise , Técnicas de Cultura de Células/instrumentação , Fracionamento Químico , Euryarchaeota/metabolismo , Cinética , Dados de Sequência Molecular , Pressão , Análise de Sobrevida , Termodinâmica
6.
Environ Microbiol ; 11(12): 3210-22, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19691504

RESUMO

To extend knowledge of subseafloor microbial communities within the oceanic crust, the abundance, diversity and composition of microbial communities in crustal fluids at back-arc hydrothermal fields of the Southern Mariana Trough (SMT) were investigated using culture-independent molecular techniques based on 16S rRNA gene sequences. Seafloor drilling was carried out at two hydrothermal fields, on- and off-ridge of the back-arc spreading centre of the SMT. 16S rRNA gene clone libraries for bacterial and archaeal communities were constructed from the fluid samples collected from the boreholes. Phylotypes related to Thiomicrospira in the Gammaproteobacteria (putative sulfide-oxidizers) and Mariprofundus in the Zetaproteobacteria (putative iron-oxidizers) were recovered from the fluid samples. A number of unique archaeal phylotypes were also recovered. Fluorescence in situ hybridization (FISH) analysis indicated the presence of active bacterial and archaeal populations in the fluids. The Zetaproteobacteria accounted for up to 32% of the total prokaryotic cell number as shown by FISH analysis using a specific probe designed in this study. Our results lead to the hypothesis that the Zetaproteobacteria play a role in iron oxidation within the oceanic crust.


Assuntos
Sedimentos Geológicos/microbiologia , Proteobactérias/isolamento & purificação , Água do Mar/microbiologia , Sequência de Bases , Ecossistema , Ferro/metabolismo , Dados de Sequência Molecular , Oxirredução , Oceano Pacífico , Filogenia , Proteobactérias/classificação , Proteobactérias/metabolismo , RNA Ribossômico 16S
7.
Appl Environ Microbiol ; 75(22): 7153-62, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19783748

RESUMO

The potential for microbial nitrogen fixation in the anoxic methane seep sediments in a mud volcano, the number 8 Kumano Knoll, was characterized by molecular phylogenetic analyses. A total of 111 of the nifH (a gene coding a nitrogen fixation enzyme, Fe protein) clones were obtained from different depths of the core sediments, and the phylogenetic analysis of the clones indicated the genetic diversity of nifH genes. The predominant group detected (methane seep group 2), representing 74% of clonal abundance, was phylogenetically related to the nifH sequences obtained from the Methanosarcina species but was most closely related to the nifH sequences potentially derived from the anoxic methanotrophic archaea (ANME-2 archaea). The recovery of the nif gene clusters including the nifH sequences of the methane seep group 2 and the subsequent reverse transcription-PCR detection of the nifD and nifH genes strongly suggested that the genetic components of the gene clusters would be operative for the in situ assimilation of molecular nitrogen (N(2)) by the host microorganisms. DNA-based quantitative PCR of the archaeal 16S rRNA gene, the group-specific mcrA (a gene encoding the methyl-coenzyme M reductase alpha subunit) gene, and the nifD and nifH genes demonstrated the similar distribution patterns of the archaeal 16S rRNA gene, the mcrA groups c-d and e, and the nifD and nifH genes through the core sediments. These results supported the idea that the anoxic methanotrophic archaea ANME-2c could be the microorganisms hosting the nif gene clusters and could play an important role in not only the in situ carbon (methane) cycle but also the nitrogen cycle in subseafloor sediments.


Assuntos
Archaea/genética , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Fixação de Nitrogênio , Anaerobiose , Archaea/classificação , Archaea/enzimologia , Clonagem Molecular , DNA Arqueal/genética , Genes Arqueais/genética , Variação Genética , Japão , Metano/metabolismo , Dados de Sequência Molecular , Família Multigênica/genética , Fixação de Nitrogênio/genética , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/química , Alinhamento de Sequência
8.
Sci Adv ; 4(6): eaao4631, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29928689

RESUMO

Microbial life inhabiting subseafloor sediments plays an important role in Earth's carbon cycle. However, the impact of geodynamic processes on the distributions and carbon-cycling activities of subseafloor life remains poorly constrained. We explore a submarine mud volcano of the Nankai accretionary complex by drilling down to 200 m below the summit. Stable isotopic compositions of water and carbon compounds, including clumped methane isotopologues, suggest that ~90% of methane is microbially produced at 16° to 30°C and 300 to 900 m below seafloor, corresponding to the basin bottom, where fluids in the accretionary prism are supplied via megasplay faults. Radiotracer experiments showed that relatively small microbial populations in deep mud volcano sediments (102 to 103 cells cm-3) include highly active hydrogenotrophic methanogens and acetogens. Our findings indicate that subduction-associated fluid migration has stimulated microbial activity in the mud reservoir and that mud volcanoes may contribute more substantially to the methane budget than previously estimated.

9.
Front Microbiol ; 8: 1135, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676800

RESUMO

Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth's surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria, heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 104 cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as "deep-biosphere seeds" into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere.

10.
Sci Rep ; 7(1): 15646, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142325

RESUMO

Methane emission from the geosphere is generally characterized by a radiocarbon-free signature and might preserve information on the deep carbon cycle on Earth. Here we report a clear relationship between the origin of methane-rich natural gases and the geodynamic setting of the West Pacific convergent plate boundary. Natural gases in the frontal arc basin (South Kanto gas fields, Northeast Japan) show a typical microbial signature with light carbon isotopes, high CH4/C2H6 and CH4/3He ratios. In the Akita-Niigata region - which corresponds to the slope stretching from the volcanic-arc to the back-arc -a thermogenic signature characterize the gases, with prevalence of heavy carbon isotopes, low CH4/C2H6 and CH4/3He ratios. Natural gases from mud volcanoes in South Taiwan at the collision zone show heavy carbon isotopes, middle CH4/C2H6 ratios and low CH4/3He ratios. On the other hand, those from the Tokara Islands situated on the volcanic front of Southwest Japan show the heaviest carbon isotopes, middle CH4/C2H6 ratios and the lowest CH4/3He ratios. The observed geochemical signatures of natural gases are clearly explained by a mixing of microbial, thermogenic and abiotic methane. An increasing contribution of abiotic methane towards more tectonically active regions of the plate boundary is suggested.

11.
ISME J ; 11(4): 909-919, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28045457

RESUMO

Rich animal and microbial communities have been found at deep-sea hydrothermal vents. Although the biogeography of vent macrofauna is well understood, the corresponding knowledge about vent microbial biogeography is lacking. Here, we apply the multilocus sequence analysis (MLSA) to assess the genetic variation of 109 Sulfurimonas strains with ⩾98% 16S rRNA gene sequence similarity, which were isolated from four different geographical regions (Okinawa Trough (OT), Mariana Volcanic Arc and Trough (MVAT), Central Indian Ridge (CIR) and Mid-Atlantic Ridge (MAR)). Sequence typing based on 11 protein-coding genes revealed high genetic variation, including some allele types that are widespread within regions, resulting in 102 nucleotide sequence types (STs). This genetic variation was predominantly due to mutation rather than recombination. Phylogenetic analysis of the 11 concatenated genes showed a clear geographical isolation corresponding to the hydrothermal regions they originated from, suggesting limited dispersal. Genetic differentiation among Sulfurimonas populations was primarily influenced by geographical distance rather than gas composition of vent fluid or habitat, although in situ environmental conditions of each microhabitat could not be examined. Nevertheless, Sulfurimonas may possess a higher dispersal capability compared with deep-sea hydrothermal vent thermophiles. This is the first report on MLSA of deep-sea hydrothermal vent Epsilonproteobacteria, which is indicative of allopatric speciation.


Assuntos
Epsilonproteobacteria/classificação , Variação Genética , Fontes Hidrotermais/microbiologia , Animais , Ecossistema , Filogenia , RNA Ribossômico 16S/genética
12.
FEMS Microbiol Ecol ; 57(1): 149-57, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16819958

RESUMO

A quantitative fluorogenic PCR method for group-specific methyl coenzyme M reductase subunit A genes (mcrA) from methanotrophic archaea was established and applied to the characterization of microbial communities in anoxic methane seep sediments at the accretionary prism of the Nankai Trough. All of the previously identified subgroups of anaerobic methanotroph (ANME) mcrA genes were detected in the cores up to 25 cm below the seafloor, but distributional patterns of mcrA genes were found to differ according to depth. These findings suggest a distinct distribution of phylogenetically and physiologically diverse methanotrophic archaea that mediate methane oxidation in the anoxic sediments. This quantification method will contribute to future investigations of methanotrophic microbial ecosystems in anoxic marine sediments.


Assuntos
Euryarchaeota/genética , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Oxirredutases/genética , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Anaerobiose , Contagem de Colônia Microbiana/métodos , Euryarchaeota/classificação , Corantes Fluorescentes , Japão , Dados de Sequência Molecular
13.
Front Microbiol ; 4: 107, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23630523

RESUMO

Deep-sea hydrothermal vent fields are areas on the seafloor with high biological productivity fueled by microbial chemosynthesis. Members of the Aquificales genus Persephonella are obligately chemosynthetic bacteria, and appear to be key players in carbon, sulfur, and nitrogen cycles in high temperature habitats at deep-sea vents. Although this group of bacteria has cosmopolitan distribution in deep-sea hydrothermal ecosystem around the world, little is known about their population structure such as intraspecific genomic diversity, distribution pattern, and phenotypic diversity. We developed the multi-locus sequence analysis (MLSA) scheme for their genomic characterization. Sequence variation was determined in five housekeeping genes and one functional gene of 36 Persephonella hydrogeniphila strains originated from the Okinawa Trough and the South Mariana Trough (SNT). Although the strains share >98.7% similarities in 16S rRNA gene sequences, MLSA revealed 35 different sequence types (ST), indicating their extensive genomic diversity. A phylogenetic tree inferred from all concatenated gene sequences revealed the clustering of isolates according to the geographic origin. In addition, the phenotypic clustering pattern inferred from whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis can be correlated to their MLSA clustering pattern. This study represents the first MLSA combined with phenotypic analysis indicative of allopatric speciation of deep-sea hydrothermal vent bacteria.

14.
Front Microbiol ; 3: 89, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22435065

RESUMO

Microbial community structures in deep-sea hydrothermal vents fields are constrained by available energy yields provided by inorganic redox reactions, which are in turn controlled by chemical composition of hydrothermal fluids. In the past two decades, geochemical and microbiological studies have been conducted in deep-sea hydrothermal vents at three geographically different areas of the Southern Mariana Trough (SMT). A variety of geochemical data of hydrothermal fluids and an unparalleled microbiological dataset of various samples (i.e., sulfide structures of active vents, iron-rich mats, borehole fluids, and ambient seawater) are available for comparative analyses. Here, we summarize the geochemical and microbiological characteristics in the SMT and assess the relationship between the microbial community structures and the fluid geochemistry in the SMT by thermodynamic modeling. In the high temperature vent fluids, aerobic sulfide-oxidation has the potential to yield large amounts of bioavailable energy in the vent fluids, which is consistent with the detection of species related to sulfide-oxidizing bacteria (such as Thiomicrospira in the Gammaproteobacteria and Sulfurimonas in the Epsilonproteobacteria). Conversely, the bioavailable energy yield from aerobic iron-oxidation reactions in the low-temperature fluids collected from man-made boreholes and several natural vents were comparable to or higher than those from sulfide-oxidation. This is also consistent with the detection of species related to iron-oxidizing bacteria (Mariprofundus in the Zetaproteobacteria) in such low-temperature samples. The results of combination of microbiological, geochemical, and thermodynamic analyses in the SMT provide novel insights into the presence and significance of iron-based microbial ecosystems in deep-sea hydrothermal fields.

15.
Microbes Environ ; 25(4): 288-94, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21576884

RESUMO

The galatheid crab, Shinkaia crosnieri (Decapoda: Galatheidae), forms dense colonies in the Iheya North and Hatoma Knoll deep-sea hydrothermal fields and has numerous setae covered with filamentous epibiotic microorganisms. Molecular phylogenetic analyses revealed that the epibiotic communities in S. crosnieri consisted mainly of yet-uncultivated phylotypes within Epsilonproteobacteria and Gammaproteobacteria in both hydrothermal vent fields. Uptake experiments using (13)C-labeled tracers clearly demonstrated that both H(13)CO(3)(-) and (13)CH(4) were assimilated into not only the epibiotic microbial communities associated with the setae, but also the epibiont-free tissue of living S. crosnieri. In addition, the incorporation of H(13)CO(3)(-) into the microbial cells was strongly stimulated by the presence of reduced sulfur compounds but not by H(2). In conclusion, the uptake experiments suggested that sulfur-oxidizing chemolithoautotrophic and methanotrophic production by the epibionts provides the nutrition for S. crosnieri.


Assuntos
Anomuros/microbiologia , Biodiversidade , Proteobactérias/isolamento & purificação , Frutos do Mar/microbiologia , Animais , Crescimento Quimioautotrófico , Dados de Sequência Molecular , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/metabolismo , Água do Mar/microbiologia , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa