Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(17): 6498-6504, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33834779

RESUMO

A S6-symmetric triarylamine-based macrocycle (i.e., hexaaza[16]paracyclophane), decorated with six lateral amide functions, is synthesized by a convergent and modular strategy. This macrocycle is shown to undergo supramolecular polymerization in o-dichlorobenzene, and its nanotubular structure is elucidated by a combination of spectroscopy and microscopy techniques, together with X-ray scattering and molecular modeling. Upon sequential oxidation, a spectroelectrochemical analysis of the supramolecular polymer suggests an extended electronic delocalization of charge carriers both within the macrocycles (through bond) and between the macrocycles along the stacking direction (through space).

2.
J Am Chem Soc ; 140(35): 10946-10949, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30070108

RESUMO

Here, we report the first redox-active chiral dopant FcD, which electrically alters its helical twisting power (HTP) for a cholesteric liquid crystalline (LC) medium and quickly changes the reflection color. FcD is composed of an axially chiral binaphthyl unit in conjunction with a redox-active ferrocene unit. A cholesteric LC phase of 4'-pentyloxy-4-cyanobiphenyl, doped with FcD (3.0 mol %), developed a blue reflection color. When nitrosyl tetrafluoroborate, a one-electron oxidant, was added to this cholesteric LC phase, FcD was oxidized to decrease its original HTP value by 13%, so that a green reflection color was developed. In the presence of a supporting electrolyte, the reflection color was electrochemically modulated using a sandwich-type glass cell with indium tin oxide electrodes. In quick response to the applied voltage of +1.5 V, the reflection color changed from blue to green within 0.4 s. When 0 V was applied, the reflection color returned to its original blue color. The FcD-doped cholesteric LC is characterized by its fastest electrochemical response and lowest operating voltage among those reported for electrically driven cholesteric LC devices.


Assuntos
Cor , Técnicas Eletroquímicas , Cristais Líquidos/química , Eletrodos , Estrutura Molecular , Oxirredução
3.
J Vis Exp ; (144)2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30882799

RESUMO

We demonstrate a method for fabricating a prototype reflective display device that contains cholesteric liquid crystal (LC) as an active component. The cholesteric LC is composed of a nematic LC 4'-pentyloxy-4-cyanobiphenyl (5OCB), redox-responsive chiral dopant (FcD), and a supporting electrolyte 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMIm-OTf). The most important component is FcD. This molecule changes its helical twisting power (HTP) value in response to redox reactions. Therefore, in situ electrochemical redox reactions in the LC mixture allow for the device to change its reflection color in response to electrical stimuli. The LC mixture was introduced, by a capillary action, into a sandwich-type ITO glass cell comprising two glass slides with patterned indium tin oxide (ITO) electrodes, one of which was coated with poly(3,4-ethylenedioxythiophene)-co-poly(ethylene glycol) doped with perchlorate (PEDOT+). Upon application of +1.5 V, the reflection color of the device changed from blue (467 nm) to green (485 nm) in 0.4 s. Subsequent application of 0 V made the device recover the original blue color in 2.7 s. This device is characterized by its fastest electrical response and lowest operating voltage among any previously reported cholesteric LC device. This device could pave the way for the development of next generation reflective displays with low energy consumption rates.


Assuntos
Colesterol/química , Cor , Técnicas Eletroquímicas/instrumentação , Cristais Líquidos/química , Eletroquímica , Eletrodos , Oxirredução
4.
Adv Mater ; 28(21): 4077-83, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27027423

RESUMO

The first design strategy that allows both memorization and modulation of the liquid-crystalline reflection color is reported. Electrophoretic deposition of a tailored ionic chiral dopant is key to realizing this unprecedented function, which may pave the way for the development of full-color e-paper that can operate without the need of color filters.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa