Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 14(7): e70024, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39026960

RESUMO

Research on predator-prey interactions between sharks and cetaceans remain limited. Here, we report on a video of a shortfin mako shark circling a finless porpoise with a damaged caudal fin in the Seto Inland Sea, Japan. The finless porpoise was neither emaciated nor inactive, but unable to swim effectively due to the complete lack of a caudal fin. Some circumstantial evidence, including a bite mark on the porpoise's head, strongly suggests that the mako shark attacked it. Furthermore, the possible time difference between the two injuries the porpoise sustained may reflect the shark's hunting tactics. While mako sharks primarily feed on small fish and cephalopods, this observation suggests they also may prey on live cetaceans more often than previously thought.

2.
Biol Open ; 11(6)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35686686

RESUMO

Gestation periods vary greatly across elasmobranch species. Differences in body size and body temperature (i.e. major determinants of metabolic rates) might explain such variation. Although temperature effects have been demonstrated for captive animals, body size effects remain undocumented. Moreover, whether metabolic rates of mothers or those of embryos affect gestation periods remains unclear. Because biological times generally scale with mass1-ß, where ß is metabolic scaling exponent (0.8-0.9 in fishes), we hypothesized that elasmobranch gestation periods would scale with mass0.1-0.2. We also hypothesized that regionally endothermic species with elevated metabolic rates should have shorter gestation periods than similar-sized ectothermic species if the metabolic rates of mothers are responsible. We compiled data on gestation periods for 36 elasmobranch species to show that gestation periods scale with M0.11 and m0.17, where M and m are adult female mass and birth mass, respectively. Litter size and body temperature also affected gestation periods. Our findings suggest that the body-mass dependence of metabolic rate explains some variations in elasmobranch gestation periods. Unexpectedly, regionally endothermic sharks did not have shorter gestation periods than their ectothermic counterparts, suggesting that the metabolic rates of embryos, which are likely ectothermic in all elasmobranch species, may be responsible. This article has an associated First Person interview with the first author of the paper.


Assuntos
Peixes , Tubarões , Animais , Peso Corporal , Feminino , Humanos , Gravidez , Tubarões/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa