Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 136(47): 16522-32, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25253644

RESUMO

Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants.

2.
Cell Physiol Biochem ; 32(2): 431-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23988609

RESUMO

BACKGROUND/AIMS: Acetaminophen (APAP) effects on intestinal barrier properties are less investigated. APAP may lead to a changed bioavailability of a subsequently administered drug or diet in the body. We investigated the influence of APAP on enterocytic cell membrane properties that are able to modify the net intestinal absorption of administered substances across the Caco-2 barrier model. METHODS: The effect of APAP on cytotoxicity was measured by LDH assay, TER value and cell capacitance label-free using impedance monitoring, membrane permeability by FITC-dextrans, and efflux transporter MDR1 activity by Rh123. APAP levels were determined by HPLC analysis. Cell membrane topography and microvilli were investigated using SEM and intestinal alkaline phosphatase (Alpi) and tight junction protein 1 (TJP1) expression by western blot analysis. RESULTS: APAP changed the apical cell surface, reduced the number of microvilli and protein expression of Alpi as a brush border marker and TJP1, increased the membrane integrity and concurrently decreased cell capacitance over time. In addition, APAP decreased the permeability to small molecules and increased the efflux transporter activity, MDR1. CONCLUSION: APAP alters the Caco-2 cell membrane properties by different mechanisms and reduces the permeability to administered substances. These findings may help to optimize therapeutic implications.


Assuntos
Acetaminofen/farmacologia , Membrana Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Absorção/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Analgésicos não Narcóticos/farmacologia , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/ultraestrutura , Proteínas Ligadas por GPI/metabolismo , Humanos , Microscopia Eletrônica de Varredura , Mitocôndrias/efeitos dos fármacos
3.
Opt Express ; 20(10): 11166-77, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22565740

RESUMO

We use spectroscopic ellipsometry to investigate the angular-dependent optical modes of fishnet metamaterials fabricated by nanoimprint lithography. Spectroscopic ellipsometry is demonstrated as a fast and efficient method for metamaterial characterization and the measured polarization ratios significantly simplify the calibration procedures compared to reflectance and transmittance measurements. We show that the modes can be well identified by a combination of comparing different substrates and considering the angular dependence of the Wood's anomalies. The lack of angular dispersion of the anti-symmetric gap-modes does not agree with the model and requires further theoretical investigation.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Óptica e Fotônica , Algoritmos , Calibragem , Desenho de Equipamento , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Modelos Estatísticos , Modelos Teóricos , Espectrofotometria/métodos
4.
ACS Nano ; 8(12): 12883-94, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25470412

RESUMO

Highly photoconductive thin films of inorganic-capped PbS nanocrystal quantum dots (QDs) are reported. Stable colloidal dispersions of (NH4)3AsS3-capped PbS QDs were processed by a conventional dip-coating technique into a thin homogeneous film of electronically coupled PbS QDs. Upon drying at 130 °C, (NH4)3AsS3 capping ligands were converted into a thin layer of As2S3, acting as an infrared-transparent semiconducting glue. Photodetectors obtained by depositing such films onto glass substrates with interdigitate electrode structures feature extremely high light responsivity and detectivity with values of more than 200 A/W and 1.2×10(13) Jones, respectively, at infrared wavelengths up to 1400 nm. Importantly, these devices were fabricated and tested under ambient atmosphere. Using a set of time-resolved optoelectronic experiments, the important role played by the carrier trap states, presumably localized on the arsenic-sulfide surface coating, has been elucidated. Foremost, these traps enable a very high photoconductive gain of at least 200. The trap state density as a function of energy has been plotted from the frequency dependence of the photoinduced absorption (PIA), whereas the distribution of lifetimes of these traps was recovered from PIA and photoconductivity (PC) phase spectra. These trap states also have an important impact on carrier dynamics, which led us to propose a kinetic model for trap state filling that consistently describes the experimental photoconductivity transients at various intensities of excitation light. This model also provides realistic values for the photoconductive gain and thus may serve as a useful tool to describe photoconductivity in nanocrystal-based solids.

5.
ACS Nano ; 6(5): 4113-21, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22506926

RESUMO

Indium tin oxide (ITO) nanopatterned electrodes are prepared from colloidal solutions as a material saving alternative to the industrial vapor phase deposition and top down processing. For that purpose highly monodisperse In(1-x)Sn(x) (x < 0.1) colloidal nanocrystals (NCs) are synthesized with accurate size and composition control. The outstanding monodispersity of the NCs is evidenced by their self-assembly properties into highly ordered superlattices. Deposition on structured substrates and subsequent treatment in oxygen plasma converts the NC assemblies into transparent electrode patterns with feature sizes down to the diameter of single NCs. The conductivity in these ITO electrodes competes with the best values reported for electrodes from ITO nanoparticle inks.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa