Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(38): 14081-14095, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31366730

RESUMO

TP53 is the most frequently mutated tumor suppressor gene in many cancers, yet biochemical characterization of several of its reported mutations with probable biological significance have not been accomplished enough. Specifically, missense mutations in TP53 can contribute to tumorigenesis through gain-of-function of biochemical and biological properties that stimulate tumor growth. Here, we identified a relatively rare mutation leading to a proline to leucine substitution (P152L) in TP53 at the very end of its DNA-binding domain (DBD) in a sample from an Indian oral cancer patient. Although the P152Lp53 DBD alone bound to DNA, the full-length protein completely lacked binding ability at its cognate DNA motifs. Interestingly, P152Lp53 could efficiently tetramerize, and the mutation had only a limited impact on the structure and stability of full-length p53. Significantly, when we expressed this variant in a TP53-null cell line, it induced cell motility, proliferation, and invasion compared with a vector-only control. Also, enhanced tumorigenic potential was observed when P152Lp53-expressing cells were xenografted into nude mice. Investigating the effects of P152Lp53 expression on cellular pathways, we found that it is associated with up-regulation of several pathways, including cell-cell and cell-extracellular matrix signaling, epidermal growth factor receptor signaling, and Rho-GTPase signaling, commonly active in tumorigenesis and metastasis. Taken together, our findings provide a detailed account of the biochemical and cellular alterations associated with the cancer-associated P152Lp53 variant and establish it as a gain-of-function TP53 variant.


Assuntos
Carcinogênese/genética , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Mutação com Ganho de Função , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell Biol Toxicol ; 36(3): 273-278, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31758290

RESUMO

Glioblastoma (GBM) is the most aggressive type of glioma. Temozolomide (TMZ) is currently the drug of choice used for post-operative chemotherapy of GBM. However, the presence of intrinsic and acquired resistance hinders the success of chemotherapy. To understand the TMZ resistant mechanisms in glioma, we investigated the alterations in cellular signaling pathways by performing transcriptome analysis of TMZ treated glioma cells. Gene Set Enrichment Analysis (GSEA) indicated a significant enrichment of Wnt/ß-catenin signaling besides many other pathways in TMZ treated cells. Further, we demonstrate that TMZ treatment increased the activity from TOPflash reporter, (a Wnt responsive reporter), enhanced the levels of pGSK-3ß (S9) and reduced the levels of p-ß-catenin (S33/37/T41) with a concomitant increase in transcript and protein levels of Wnt targets in a concentration and time-dependent manner. While TMZ treated cells did not show alteration in any of the Wnt ligands, PI3K inhibitor (LY294002) treatment repressed Akt activation and abolished the TMZ-mediated induction of Wnt/ß-catenin pathway. In addition, we show that Wnt/ß-catenin signaling activation by TMZ is independent of ATM/Chk2 pathway. Further, we also demonstrate the activation of mTOR pathway after TMZ treatment. Thus, our results demonstrate that activation of Wnt/ß-catenin pathway involves an ATM/Chk2- independent PI3K/Akt/GSK-3 cascade in TMZ treated cells and further provides mechanistic basis for the chemoresistance of glioma to TMZ.


Assuntos
Glioma/metabolismo , Temozolomida/farmacologia , Via de Sinalização Wnt/fisiologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Temozolomida/metabolismo , Proteínas Wnt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo
3.
Biochem Biophys Res Commun ; 515(1): 241-247, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31146910

RESUMO

Phosphatases play an important role in cellular signaling and are often found dysregulated in cancers including glioblastoma (GBM). A comprehensive bioinformatics analysis of phosphatases (n = 403) in multiple datasets revealed their deregulation in GBM. Among the differentially regulated phosphatases (n = 186; 46.1%), majority of them were found to be regulated by microRNA (n = 94; 50.5%) followed by DNA methylation (n = 22; 11.8%) and altered copy number variation (n = 10; 5.37%). STYXL1 (Serine/threonine/tyrosine-interacting-like protein 1) was found to be the second most amplified gene in GBM, upregulated, and correlated to poor prognosis. The expression of STYXL1 was also found to be higher in IDH1 mutant gliomas and G-CIMP- gliomas which are reported to be more aggressive than their corresponding counterparts. Silencing STYXL1 inhibited glioma cell growth, soft agar colony formation, migration, invasion, proliferation, and xenograft tumor growth. Further, ectopic expression of STYXL1 was found to promote glioma cell growth, soft agar colony formation, migration, and RasV12 induced in-vitro transformation of immortalized human astrocytes, thus confirming its oncogenic potential in GBM. In this report, we provide a comprehensive overview of deregulation of phosphatases in GBM and demonstrate for the first time, the oncogenic nature of STYXL1 in GBM. This study might be useful for treatment of GBM patients with deregulated STYXL1.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Neoplasias Encefálicas/genética , Carcinogênese/genética , Glioma/genética , Monoéster Fosfórico Hidrolases/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/terapia , Humanos , Camundongos , Monoéster Fosfórico Hidrolases/metabolismo , Terapêutica com RNAi/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa