Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982271

RESUMO

The kidneys are one of the main end organs targeted by hypertensive disease. Although the central role of the kidneys in the regulation of high blood pressure has been long recognized, the detailed mechanisms behind the pathophysiology of renal damage in hypertension remain a matter of investigation. Early renal biochemical alterations due to salt-induced hypertension in Dahl/salt-sensitive rats were monitored by Fourier-Transform Infrared (FTIR) micro-imaging. Furthermore, FTIR was used to investigate the effects of proANP31-67, a linear fragment of pro-atrial natriuretic peptide, on the renal tissue of hypertensive rats. Different hypertension-induced alterations were detected in the renal parenchyma and blood vessels by the combination of FTIR imaging and principal component analysis on specific spectral regions. Changes in amino acids and protein contents observed in renal blood vessels were independent of altered lipid, carbohydrate, and glycoprotein contents in the renal parenchyma. FTIR micro-imaging was found to be a reliable tool for monitoring the remarkable heterogeneity of kidney tissue and its hypertension-induced alterations. In addition, FTIR detected a significant reduction in these hypertension-induced alterations in the kidneys of proANP31-67-treated rats, further indicating the high sensitivity of this cutting-edge imaging modality and the beneficial effects of this novel medication on the kidneys.


Assuntos
Hipertensão , Ratos , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Pressão Sanguínea , Ratos Endogâmicos Dahl , Hipertensão/diagnóstico por imagem , Hipertensão/tratamento farmacológico , Hipertensão/induzido quimicamente , Rim/metabolismo
2.
J Biophotonics ; 16(11): e202300163, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37528685

RESUMO

Extracorporeal membrane oxygenation (ECMO) is an invasive medical technique used to provide life support in persons with insufficient cardiac and respiratory functionalities, or to preserve, postmortem, and organ function addressing organ/tissue transplant. Although a lot of information is available about organs in their entirety, the safety and effectiveness of allogeneic tissues collected from ECMO donors have not been fully elucidated. In this preliminary study, samples of tibial and peroneal human tendons were analyzed along their length with Raman microspectroscopy and attenuated total reflection-Fourier transform infrared micro-imaging. Both techniques evidenced a different chemical composition in the terminal with respect to the central part of the tendon. Thus, a differentiated analysis was performed depending on the specific position with respect to the bone or the muscle junctions. Spectroscopic analyses showed significant differences in the characteristics of the extracellular matrix between tendons from ECMO and non-ECMO donors, suggesting changes in the amino acid (proline and hydroxyproline) content and protein structure.


Assuntos
Oxigenação por Membrana Extracorpórea , Humanos , Oxigenação por Membrana Extracorpórea/métodos , Análise Espectral , Doadores de Tecidos , Tendões/diagnóstico por imagem , Osso e Ossos
3.
Sci Rep ; 12(1): 3440, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236899

RESUMO

The pathophysiology of heart failure with preserved ejection fraction (HFpEF) is a matter of investigation and its diagnosis remains challenging. Although the mechanisms that are responsible for the development of HFpEF are not fully understood, it is well known that nearly 80% of patients with HFpEF have concomitant hypertension. We investigated whether early biochemical alterations were detectable during HFpEF progression in salt-induced hypertensive rats, using Fourier-transformed infrared (FTIR) and Raman spectroscopic techniques as a new diagnostic approach. Greater protein content and, specifically, greater collagen deposition were observed in the left atrium and right ventricle of hypertensive rats, together with altered metabolism of myocytes. Additionally, Raman spectra indicated a conformational change, or different degree of phosphorylation/methylation, in tyrosine-rich proteins. A correlation was found between tyrosine content and cardiac fibrosis of both right and left ventricles. Microcalcifications were detected in the left and right atria of control animals, with a progressive augmentation from six to 22 weeks. A further increase occurred in the left ventricle and right atrium of 22-week salt-fed animals, and a positive correlation was shown between the mineral deposits and the cardiac size of the left ventricle. Overall, FTIR and Raman techniques proved to be sensitive to early biochemical changes in HFpEF and preceded clinical humoral and imaging markers.


Assuntos
Insuficiência Cardíaca , Hipertensão , Animais , Insuficiência Cardíaca/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Humanos , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Volume Sistólico/fisiologia , Tirosina
4.
J Proteomics ; 228: 103927, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32768606

RESUMO

Osteochondrosis is a developmental orthopedic disease affecting growing cartilage in young horses. In this study we compared the proteomes of equine chondrocytes obtained from healthy and osteochondrotic cartilage using a label-free mass spectrometry approach. Quantitative changes of some proteins selected for their involvement in different functional pathways highlighted by the bioinformatics analysis, were validated by western blotting, while biochemical alterations of extracellular matrix were confirmed via Raman spectroscopy analysis. In total 1637 proteins were identified, of which 59 were differentially abundant. Overall, the results highlighted differentially represented proteins involved in metabolic and functional pathways that may be related to the failure of the endochondral ossification process occurring in osteochondrosis. In particular, we identified proteins involved in extracellular matrix degradation and organization, vitamin metabolism, osteoblast differentiation, apoptosis, protein folding and localization, signalling and gene expression modulation and lysosomal activities. These results provide valuable new insights to elucidate the underlying molecular mechanisms associated with the development and progression of osteochondrosis. SIGNIFICANCE: Osteochondrosis is a common articular disorder in young horses mainly due to defects in endochondral ossification. The pathogenesis of osteochondrosis is still poorly understood and only a limited number of proteomic studies have been conducted. This study provides a comprehensive characterization of proteomic alterations occurring in equine osteochondrotic chondrocytes, the only resident cell type that modulates differentiation and maturation of articular cartilage. The results evidenced alterations in abundance of proteins involved in functional and metabolic pathways and in extracellular matrix remodelling. These findings could help clarify some molecular aspects of osteochondrosis and open new fields of research for elucidating the pathogenesis of this disease.


Assuntos
Cartilagem Articular , Osteocondrose , Animais , Condrócitos , Cavalos , Osteocondrose/veterinária , Proteoma , Proteômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa