Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673914

RESUMO

Plant viral nanoparticles (VNPs) are attractive to nanomedicine researchers because of their safety, ease of production, resistance, and straightforward functionalization. In this paper, we developed and successfully purified a VNP derived from turnip mosaic virus (TuMV), a well-known plant pathogen, that exhibits a high affinity for immunoglobulins G (IgG) thanks to its functionalization with the Z domain of staphylococcal Protein A via gene fusion. We selected cetuximab as a model IgG to demonstrate the versatility of this novel TuMV VNP by developing a fluorescent nanoplatform to mark tumoral cells from the Cal33 line of a tongue squamous cell carcinoma. Using confocal microscopy, we observed that fluorescent VNP-cetuximab bound selectively to Cal33 and was internalized, revealing the potential of this nanotool in cancer research.


Assuntos
Nanopartículas , Humanos , Nanopartículas/química , Linhagem Celular Tumoral , Potyvirus , Imunoglobulina G/metabolismo , Cetuximab/farmacologia , Cetuximab/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000536

RESUMO

Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.


Assuntos
Alérgenos , Vacinas de Partículas Semelhantes a Vírus , Humanos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Alérgenos/imunologia , Hipersensibilidade Alimentar/terapia , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade/terapia , Hipersensibilidade/imunologia , Adjuvantes Imunológicos
3.
Nat Protoc ; 19(3): 727-751, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243093

RESUMO

B cells generate antibodies that provide protection from infection, but also cause pathology in autoimmune and allergic conditions. Antigen-specific B cells can be detected by binding their surface antibody receptors with native antigens conjugated to fluorescent probes, a technique that has revealed substantial insight into B cell activation and function. This protocol describes the process of generating fluorescent antigen tetramer probes and delineates a process of enriching large samples based on antigen-specificity for high-resolution analyses of the antigen-specific B cell repertoire. Enrichment of tetramer-binding cells allows for detection of antigen-specific B cells as rare as 1 in 100 million cells, providing sufficient resolution to study naive B cells and IgE-expressing cells by flow cytometry. The generation of antigen tetramers involves antigen biotinylation, assessment of biotin:antigen ratio for optimal tetramer loading and polymerization around a streptavidin-fluorophore backbone. We also describe the construction of a control tetramer to exclude B cells binding to the tetramer backbone. We provide a framework to validate whether tetramer probes are detecting true antigen-specific B cells and discuss considerations for experimental design. This protocol can be performed by researchers trained in basic biomedical/immunological research techniques, using instrumentation commonly found in most laboratories. Constructing the antigen and control tetramers takes 9 h, though their specificity should be assessed before experimentation and may take weeks to months depending on the method of validation. Sample enrichment requires ~2 h but is generally time and cost neutral as fewer cells are run through the flow cytometer.


Assuntos
Antígenos , Linfócitos B , Citometria de Fluxo/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa