RESUMO
Medulloblastoma is the most common type of pediatric malignant primary brain tumor, and about one-third of patients die due to disease recurrence and most survivors suffer from long-term side effects. MB is clinically, genetically, and epigenetically heterogeneous and subdivided into at least four molecular subgroups: WNT, SHH, Group 3, and Group 4. We evaluated common differentially expressed genes between a Brazilian RNA-seq GSE181293 dataset and microarray GSE85217 dataset cohort of pediatric MB samples using bioinformatics methodology in order to identify hub genes of the molecular subgroups based on PPI network construction, survival and functional analysis. The main finding was the identification of five hub genes from the WNT subgroup that are tumor suppressors, and whose lower expression is related to a worse prognosis for MB patients. Furthermore, the common genes correlated with the five tumor suppressors participate in important pathways and processes for tumor initiation and progression, as well as development and differentiation, and some of them control cell stemness and pluripotency. These genes have not yet been studied within the context of MB, representing new important elements for investigation in the search for therapeutic targets, prognostic markers or for understanding of MB biology.
Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Prognóstico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genéticaRESUMO
PURPOSE: While pediatric glioblastomas are molecularly distinct from adult counterparts, the activation of NF-kB is partially shared by both subsets, playing key roles in tumor propagation and treatment response. RESULTS: We show that, in vitro, dehydroxymethylepoxyquinomicin (DHMEQ) impairs growth and invasiveness. Xenograft response to the drug alone varied according to the model, being more effective in KNS42-derived tumors. In combination, SF188-derived tumors were more sensitive to temozolomide while KNS42-derived tumors responded better to the combination with radiotherapy, with continued tumor regression. CONCLUSION: Taken together, our results strengthen the potential usefulness of NF-kB inhibition in future therapeutic strategies to overcome this incurable disease.
Assuntos
Glioblastoma , NF-kappa B , Criança , Humanos , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Glioblastoma/tratamento farmacológico , Apoptose , Linhagem Celular TumoralRESUMO
Pediatric adrenocortical tumors (ACT) are rare aggressive neoplasms with heterogeneous prognosis. Despite extensive efforts, identifying reliable prognostic factors for pediatric patients with ACT remains a challenge. MicroRNA (miRNA) signatures have been associated with cancer diagnosis, treatment response, and prognosis of several types of cancer. However, the role of miRNAs has been poorly explored in pediatric ACT. In this study, we performed miRNA microarray profiling on a cohort of 37 pediatric ACT and nine nonneoplastic adrenal (NNA) samples and evaluated the prognostic significance of abnormally expressed miRNAs using Kaplan-Meier plots, log-rank test, and Cox regression analysis. We identified a total of 98 abnormally expressed miRNAs; their expression profile discriminated ACT from NNAs. Among the 98 deregulated miRNAs, 17 presented significant associations with patients' survival. In addition, higher expression levels of hsa-miR-630, -139-3p, -125a-3p, -574-5p, -596, -564, -1321, and -423-5p and lower expression levels of hsa-miR-377-3p, -126-3p, -410, -136-3p, -29b-3p, -29a-3p, -337-5p, -143-3p, and 140-5p were significantly associated with poor prognosis, tumor relapse, and/or death. Importantly, the expression profile of these 17 miRNAs stratified patients into two groups of ACTs with different clinical outcomes. Although some individual miRNAs exhibit potential prognostic values in ACTs, only the 17 miRNA-based expression clustering was considered an independent prognostic factor for 5-year event-free survival (EFS) compared to other clinicopathological features. In conclusion, our study reports for the first time associations between miRNA profiles and childhood ACT prognosis, providing evidence that miRNAs could be useful biomarkers to discriminate patients with favorable and unfavorable clinical outcomes.
Assuntos
Perfilação da Expressão Gênica , MicroRNAs , Biomarcadores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Criança , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , PrognósticoRESUMO
PURPOSE: To evaluate the genetic variants related to polycystic ovary syndrome (PCOS) and its metabolic complications in girls born small for gestational age (SGA). DESIGN: Retrospective birth cohort study. MATERIALS AND METHODS: We evaluated 66 women of reproductive age born at term (37-42 weeks of gestational age) according to the birth weight in relation to gestational age: 26 SGA and 40 AGA (Adequate for gestational age). Anthropometric and biochemical characteristics were measured, as well as the PCOS prevalence. We analyzed 48 single nucleotide polymorphisms (SNPs) previously associated with PCOS and its comorbidities using TaqMan Low-Density Array (TLDA). miRNet and STRING databases were used to predict target and disease networks. RESULTS: Anthropometric and biochemical characteristics did not differ between the SGA and AGA groups, as well as insulin resistance and PCOS prevalence. Two SNPs were not in Hardy-Weinberg equilibrium, the rs2910164 (MIR146A C > G) and rs182052 (ADIPOQ G > A). The rs2910164 minor allele frequency (MAF) was increased in SGA (OR, 2.77; 95%; CI, 1.22-6.29), while the rs182052 was increased AGA (OR, 0.34; 95%; CI, 0.13 - 0.88). The alleles related to reduced miRNA-146a (C) and ADIPOQ (A) activity showed increased frequency in SGA. The mature miR-146a targets 319 genes, been the CXCR4, TMEM167A and IF144L common targets and contributes to PCOS. The ADIPOQ main protein interactions were ERP44, PPARGCIA and CDH13. CONCLUSIONS: The miR-146a (rs2910164) and ADIPOQ (rs182052) allelic variants are related to birth weight in SGA and may predict health-related outcomes, such as PCOS and obesity risk.
Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Adiponectina/genética , Adulto , Peso ao Nascer/genética , Estudos de Coortes , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , MicroRNAs/genética , Síndrome do Ovário Policístico/epidemiologia , Síndrome do Ovário Policístico/genética , Estudos RetrospectivosRESUMO
PURPOSE: Somatic mutations on H3 histone are currently considered a genetic hallmark for midline pediatric high-grade gliomas (HGGs). Yet, different tumor histologies have been occasionally described to carry these mutations. Since histone modifications can lead to major epigenetic changes with direct impact on prognosis and treatment, we thought to investigate the occurrence of H3F3A K27M and G34R/V mutations in a cohort of pediatric tumors which included HGGs, low-grade gliomas, ependymomas, medulloblastomas, and a series of rare brain tumor lesions of different histologies. METHODS: A total of 82 fresh-frozen pediatric brain tumor samples were evaluated. PCR or RT-PCR followed by Sanger sequencing for the exon 2 of H3F3A (containing both K27 and G34 hotspots) were obtained and aligned to human genome. Loss of trimethylation mark (H3K27me3) in H3F3A/K27M-mutant samples was confirmed by immunohistochemistry. RESULTS: We found H3F3A/K27M mutation in 2 out of 9 cases of HGGs; no H3F3A/K27M mutations were detected in low-grade gliomas (27), ependymomas (n = 10), medulloblastomas (n = 21), or a series of rare pediatric brain tumors which included meningiomas, dysembryoplastic neuroepithelial tumors (DNETs), central nervous system (CNS) germ-cell tumors, choroid plexus tumors, cortical hamartoma, subcortical tubers, and schwannomas (n = 15). H3F3A/G34R/V mutation was not observed in any of the samples. CONCLUSIONS: Our investigation reinforces the low frequency of H3F3A somatic mutations outside the HGG setting. Interestingly, an atypical focal brainstem glioma carrying H3F3A K27M mutation that showed protracted clinical course with late-onset tumor progression was identified.
Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioma , Histonas/genética , Neoplasias Meníngeas , Neoplasias Encefálicas/genética , Criança , Glioma/genética , Humanos , Mutação/genéticaRESUMO
Musashi comprises an evolutionarily conserved family of RNA-binding proteins (RBP) that regulate cell fate decisions during embryonic development and play key roles in the maintenance of self-renewal and differentiation of stem cells and adult tissues. More recently, several studies have shown that any dysregulation of MSI1 and MSI2 can lead to cellular dysfunctions promoting tissue instability and tumorigenesis. Moreover, several reports have characterized many molecular interactions between members of the Musashi family with ligands and receptors of the signaling pathways responsible for controlling normal embryonic development: Notch, Transforming Growth Factor Beta (TGF-ß), Wingless (Wnt) and Hedgehog Signaling (Hh); all of which, when altered, are strongly associated with cancer onset and progression, especially in pediatric tumors. In this context, the present review aims to compile possible cross-talks between Musashi proteins and members of the above cited molecular pathways for which dysregulation plays important roles during carcinogenesis and may be modulated by these RBP.
Assuntos
Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/fisiologia , Proteínas de Ligação a RNA/fisiologia , Transdução de Sinais , Animais , Carcinogênese , Diferenciação Celular , Desenvolvimento Embrionário , HumanosRESUMO
TP53 p.R337H germline mutation is highly prevalent in the Southern region of Brazil. We sought to investigate TP53 p.R337H mutation in pediatric tumor samples from a population settled in a geographic area of high prevalence for this variant. Mutation assessment and genetic counseling for carriers/relatives were provided. 6/57 tumor samples were heterozygous for TP53 p.R337H. As expected, a high frequency was observed within adrenocortical tumors (3/3) and choroid plexus carcinomas (2/2). Interestingly, the TP53 R337H mutation was found in one case of pediatric rhabdomyosarcoma with Li-Fraumeni pedigree. Our finding expands the spectrum of childhood cancer associated with this germline mutation.
Assuntos
Mutação em Linhagem Germinativa , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Neoplasias do Córtex Suprarrenal/epidemiologia , Neoplasias do Córtex Suprarrenal/genética , Brasil/epidemiologia , Carcinoma/epidemiologia , Carcinoma/genética , Pré-Escolar , Neoplasias do Plexo Corióideo/epidemiologia , Neoplasias do Plexo Corióideo/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Taxa de Mutação , Neoplasias/epidemiologia , Mutação Puntual , Rabdomiossarcoma/epidemiologia , Rabdomiossarcoma/genéticaRESUMO
Glioblastoma (GBM) is the most common primary malignant neoplasm of the central nervous system and, despite the standard therapy; the patients' prognoses remain dismal. The miRNA expression profiles have been associated with patient prognosis, suggesting that they may be helpful for tumor diagnosis and classification as well as predictive of tumor response to treatment. We described the microRNA expression profile of 29 primary GBM samples (9 pediatric GBMs) and 11 non-neoplastic white matter samples as controls (WM) by microarray analysis and we performed functional in vitro assays on these 2 most differentially expressed miRNAs. Hierarchical clustering analysis showed 3 distinct miRNA profiles, two of them in the GBM samples and a group consisting only of cerebral white matter. When adult and pediatric GBMs were compared to WM, 37 human miRNAs were found to be differentially expressed, with miR-10b-5p being the most overexpressed and miR-630 the most underexpressed. The overexpression of miR-630 was associated with reduced cell proliferation and invasion in the U87 GBM cell line, whereas the inhibition of miR-10b-5p reduced cell proliferation and colony formation in the U251 GBM cell line, suggesting that these miRNAs may act as tumor-suppressive and oncogenic miRNAs, respectively. The present study highlights the distinct epigenetic profiling of adult and pediatric GBMs and underscores the biological importance of mir-10b-5p and miR-630 for the pathobiology of these lethal tumors.
Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , MicroRNAs/biossíntese , RNA Neoplásico/biossíntese , Adolescente , Adulto , Idoso , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Ependymoma (EPN) is the third most common childhood cancer of the central nervous system. RELA fusion-positive EPN accounts for approximately 70% of all childhood supratentorial tumors and shows the worst prognosis among the supratentorial EPNs. TP53 mutation is infrequent in RELA fusions EPNs. In the population from the Southern region of Brazil, there is a high incidence of the germline TP53 p.R337H mutation that predisposes carriers to develop early-onset tumors. However, despite this high incidence, the frequency of this mutation among EPN patients remains to be determined. Here, we investigated the presence of the TP53 p.R337H mutation in a larger cohort of pediatric EPNs of three institutions located in the state of São Paulo, Brazil. METHODS: The TP53 p.R337H mutation was screened by conventional RT-PCR and Sanger sequencing in 49 pediatric EPNs diagnosed during the period from 1995 to 2016. RESULTS: We described for the first time a case of a 5-year-old girl with RELA fusion EPN with a heterozygous TP53 p.R337H mutation. CONCLUSIONS: The present finding indicates that the TP53 p.R337H germline mutation is uncommon in patients with EPN in Brazil and screening of pediatric patients RELA fusion EPN may be informative to better understand the role of TP53 germline mutations in the development and prognosis of these tumors.
Assuntos
Ependimoma/genética , Neoplasias Supratentoriais/genética , Proteína Supressora de Tumor p53/genética , Brasil/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Ependimoma/epidemiologia , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Neoplasias Supratentoriais/epidemiologia , Fator de Transcrição RelARESUMO
PURPOSES: Pilocytic astrocytoma (PA) is a low-grade neoplasm frequently found in childhood. PA is characterized by slow growth and a relatively good prognosis. Genetic mechanisms such as activation of MAPK, BRAF gene deregulation and neurofibromatosis type 1 (NF1) syndrome have been associated with PA development. Epigenetic signature and miRNA expression profile are providing new insights about different types of tumor, including PAs. METHODS: In the present study we evaluated global miRNA expression in 16 microdissected pediatric PA specimens, three NF1-associated PAs and 11 cerebral white matter (WM) samples by the microarray method. An additional cohort of 20 PAs was used to validate by qRT-PCR the expression of six miRNAs differentially expressed in the microarray data. RESULTS: Unsupervised hierarchical clustering analysis distinguished one cluster with nine PAs, including all NF1 cases and a second group consisting of the WM samples and seven PAs. Among 88 differentially expressed miRNAs between PAs and WM samples, the most underexpressed ones regulate classical pathways of tumorigenesis, while the most overexpressed miRNAs are related to pathways such as focal adhesion, P53 signaling pathway and gliomagenesis. The PAs/NF1 presented a subset of underexpressed miRNAs, which was also associated with known deregulated pathways in cancer such as cell cycle and hippo pathway. CONCLUSIONS: In summary, our data demonstrate that PA harbors at least two distinct miRNA signatures, including a subgroup of patients with NF1/PA lesions.
Assuntos
Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Substância Branca/metabolismo , Adolescente , Astrocitoma/genética , Neoplasias Encefálicas/genética , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Masculino , Neurofibromatose 1/genéticaRESUMO
BACKGROUND: Ependymoma (EPN) is the third most common central nervous system tumor in childhood. Recent advances in the molecular classification of EPN revealed a supratentorial (ST) ependymoma subgroup characterized by C11orf95-RELA fusion. CASE REPORT: We describe a novel RELA-fusion composed by a chimeric transcript C11orf95-LOC-RELA in a supratentorial WHO grade II EPN occurring in a 4-year-old child. Metastatic loci at the brain, leptomeningeal involvement, and pulmonary nodules were identified at tumor recurrence. The child eventually died before 1 year after recurrence. CONCLUSION: This index case showed aggressive behavior and nuclear accumulation of p65/RELA.
Assuntos
Ependimoma/genética , Proteínas de Fusão Oncogênica/genética , Proteínas/genética , Neoplasias Supratentoriais/genética , Fator de Transcrição RelA/genética , Pré-Escolar , Ependimoma/patologia , Humanos , Masculino , Neoplasias Supratentoriais/patologiaRESUMO
INTRODUCTION: Glioblastoma (GBM) is the most common malignant primary brain tumor affecting adults. In pediatric patients, GBM exhibits genetic variations distinct from those identified in the adult GBM phenotype. This tumor exhibits complex genetic changes leading to malignant progression and resistance to standard therapies including radiotherapy and temozolomide treatment. The GDF15 gene codes for a growth factor whose expression is altered in the presence of inflammations and malignancies. GDF15 is associated with a poor prognosis and with radio- and chemoresistance in a variety of tumors. The aim of this study was to compare the response to GDF15 knockdown in adult (U343) and pediatric (KNS42) GBM cell line models. METHODS: The expression of the GDF15 gene was investigated by qRT-PCR and overexpression was identified in both GBM cell lines. The KNS42 and U343 cell lines were submitted to lentiviral transduction with shRNA of GDF15 and validated at the protein level. To understand the difference between cell lines, RNAseq was performed after GDF15 knockdown. RESULTS: The data obtained demonstrated that the pathways were differentially expressed in adult GBM and pediatric GBM cell lines. This was confirmed by functional assays perfomed after independent treatments (radiotherapy and TMZ). CONCLUSION: These results demonstrated that GBM cell lines had distinct responses to GDF15 knockdown, a fact that can be explained by the different molecular profile of pediatric and adult GBM.
Assuntos
Glioblastoma/metabolismo , Fator 15 de Diferenciação de Crescimento/deficiência , Adulto , Antineoplásicos Alquilantes/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Criança , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/patologia , Glioblastoma/terapia , Fator 15 de Diferenciação de Crescimento/genética , Humanos , RNA Interferente Pequeno , Radioterapia , Temozolomida/farmacologiaRESUMO
Medulloblastoma (MB) is the most common solid tumor among pediatric patients and corresponds to 20 % of all pediatric intracranial tumors in this age group. Its treatment currently involves significant side effects. Epigenetic changes such as DNA methylation may contribute to its development and progression. DNA methyltransferase (DNMT) inhibitors have shown promising anticancer effects. The agent Zebularine acts as an inhibitor of DNA methylation and shows low toxicity and high efficacy, being a promising adjuvant agent for anti-cancer chemotherapy. Several studies have reported its effects on different types of tumors; however, there are no studies reporting its effects on MB. We analyzed its potential anticancer effects in four pediatric MB cell lines. The treatment inhibited proliferation and clonogenicity, increased the apoptosis rate and the number of cells in the S phase (p < 0.05), as well as the expression of p53, p21, and Bax, and decreased cyclin A, Survivin and Bcl-2 proteins. In addition, the combination of zebularine with the chemotherapeutic agents vincristine and cisplatin resulted in synergism and antagonism, respectively. Zebularine also modulated the activation of the SHH pathway, reducing SMO and GLI1 levels and one of its targets, PTCH1, without changing SUFU levels. A microarray analysis revealed different pathways modulated by the drug, including the Toll-Like Receptor pathway and high levels of the BATF2 gene. The low expression of this gene was associated with a worse prognosis in MB. Taken together, these data suggest that Zebularine may be a potential drug for further in vivo studies of MB treatment.
Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Neoplasias Cerebelares/tratamento farmacológico , Citidina/análogos & derivados , Metilases de Modificação do DNA/antagonistas & inibidores , Meduloblastoma/tratamento farmacológico , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Apoptose/efeitos dos fármacos , Biomarcadores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Criança , Pré-Escolar , Cisplatino/farmacologia , Citidina/farmacologia , Metilases de Modificação do DNA/metabolismo , Interações Medicamentosas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Meduloblastoma/genética , Meduloblastoma/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Vincristina/farmacologia , Adulto JovemRESUMO
PURPOSE: Medulloblastoma (MB) is the most common malignant tumor of the central nervous system (CNS) in children. Despite its relative good survival rates, treatment can cause long time sequels and may impair patients' lifespan and quality, making the search for new treatment options still necessary. Polo like kinases (PLKs) constitute a five-member serine/threonine kinases family (PLK 1-5) that regulates different stages during cell cycle. Abnormal PLKs expression has been observed in several cancer types, including MB. As gene regulators, miRNAs have also been described with variable expression in cancer. METHODS: We evaluated gene expression profiles of all PLK family members and related miRNAs (miR-100, miR-126, miR-219, and miR-593*) in MB cell lines and tumor samples. RESULTS: RT-qPCR analysis revealed increased levels of PLK1-4 in all cell lines and in most MB samples, while PLK5 was found underexpressed. In parallel, miR-100 was also found upregulated while miR-129, miR-216, and miR-593* were decreased in MB cell lines. Variable miRNAs expression patterns were observed in MB samples. However, a correlation between miR-100 and PLK4 expression was observed, and associations between miR-100, miR-126, and miR-219 expression and overall and event free survival were also evinced in our cohort. Moreover, despite the lack of association with clinico-pathological features, when comparing primary tumors to those relapsed, we found a consistent decrease on PLK2, miR-219, and miR-598* and an increase on miR-100 and miR-126. CONCLUSION: Specific dysregulation on PLKs and associated miRNAs may be important in MB and can be used to predict prognosis. Although miRNAs sequences are fundamental to predict its target, the cell type may also be consider once that mRNA repertoire can define different roles for specific miRNA in a given cell.
Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias Cerebelares/genética , Regulação Neoplásica da Expressão Gênica/genética , Meduloblastoma/genética , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Adolescente , Adulto , Fatores Etários , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/enzimologia , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/patologia , Criança , Feminino , Humanos , Masculino , Meduloblastoma/enzimologia , Meduloblastoma/mortalidade , Meduloblastoma/patologia , MicroRNAs/genética , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Estatísticas não Paramétricas , Análise de Sobrevida , Quinase 1 Polo-LikeRESUMO
BACKGROUND: Glioblastoma (GBM) is considered to be one of the most aggressive tumors of the central nervous system (CNS). Even with the use of modern treatment protocols, the prognosis remains reserved, with children with GBM having a mean survival of 12-15 months. METHODS: In the present study we investigated the potential radiosensitizing effect of PCI-24781, a potent pan-histone deacetylase inhibitor (HDACi), on the SF188 and KNS42 cell lines of pediatric GBM. Cell proliferation rates, clonogenicity and apoptosis were compared in the presence and absence of treatment with PCI-24781. We also compared the clonogenicity rates of the irradiated SF188 and KNS42 cell lines with or without previous treatment with PCI-24781 at the doses of 0.25-16 µM. In addition, we investigated the effects of PCI-24781 on the expression of some of the main proteins responsible for the repair of double-strand DNA breaks caused by irradiation. RESULTS: The inhibitor blocked cell proliferation, induced death by apoptosis and reduced the colony forming capacity of the cell lines, both of them showing a significant decrease of colony formation at all irradiation doses. The expression of the Rad51 protein, important for the homologous recombination (HR) repair pathway, and of the DNA-PKcs, Ku70 and Ku86 proteins, important for the non-homologous end joining (NHEJ) repair pathway, was more reduced when the irradiated cell line was previously treated with PCI-24781 than when it was treated exclusively with radiotherapy. CONCLUSIONS: These findings demonstrate that HDACi PCI-24781 has a radiosensitizing profile that compromises the repair of double-strand DNA breaks in cells of pediatric GBM treated with radiotherapy.
RESUMO
BACKGROUND: Glioblastoma is the most common tumor of the central nervous system and one of the hardest tumors to treat. Consequently, the search for novel therapeutic options is imperative. 7-epiclusianone, a tetraprenylated benzophenone isolated from the epicarp of the native plant Garcinia brasiliensis, exhibits a range of biological activities but its prospect anticancer activity is underexplored. Thus, the aim of the present study was to evaluate the influence of 7-epiclusianone on proliferation, clonogenic capacity, cell cycle progression and induction of apoptosis in two glioblastoma cell lines (U251MG and U138MG). METHODS: Cell viability was measured by the MTS assay; for the clonogenic assay, colonies were stained with Giemsa and counted by direct visual inspection; For cell cycle analysis, cells were stained with propidium iodide and analyzed by cytometry; Cyclin A expression was determined by immunoblotting; Apoptotic cell death was determined by annexin V fluorescein isothiocyanate labeling and Caspase-3 activity in living cells. RESULTS: Viability of both cell lines was drastically inhibited; moreover, the colony formation capacity was significantly reduced, demonstrating long-term effects even after removal of the drug. 7-epiclusianone treatment at low concentrations also altered cell cycle progression, decreased the S and G2/M populations and at higher concentrations increased the number of cells at sub-G1, in concordance with the increase of apoptotic cells. CONCLUSION: The present study demonstrates for the first time the anticancer potential of 7-epiclusianone against glioblastoma cells, thus meriting its further investigation as a potential therapeutic agent.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Benzofenonas/farmacologia , Benzoquinonas/farmacologia , Garcinia/química , Glioblastoma/fisiopatologia , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , HumanosRESUMO
Teratomas are very rare intracranial tumors and cytogenetic information on this group remains rare. We report a case of a mature teratoma with abnormal +21 trisomy in tumor karyotype ocurring in a non-Down syndrome(DS) infant. Additionally, the evidence for the contribution of chromosome 21 trisomy in this neoplasia are briefly reviewed. The 6-month-old male baby presented with a posterior fossa tumor. Histological evaluation of tumor specimen showed a mature teratoma composed of fully differentiated ectodermal, mesodermal and endodermal components. Although somatic karyotyping of the index case was normal, composite tumor karyotype depicted 47,XY,+21[6]/46,XY[6]. Besides previous reports of children with DS and intracranial teratomas, this is the first report to describe the occurrence of an isolated chromosome 21 trisomy within the tumor of a non-DS child. The participation of chromosome 21 in this rare pediatric tumor, either somatic or restricted to tumor specimen,may deserve special interest and further investigation.
Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Síndrome de Down/genética , Síndrome de Down/patologia , Neoplasias Infratentoriais/genética , Neoplasias Infratentoriais/patologia , Teratoma/genética , Teratoma/patologia , Cromossomos Humanos Par 21/genética , Análise Citogenética , Humanos , Lactente , MasculinoRESUMO
Pediatric adrenocortical tumors (ACTs) are rare, highly heterogeneous neoplasms with limited therapeutic options, making the investigation of new targets with potential therapeutic or prognostic purposes urgent. The PRKAB2 gene produces one of the subunits of the AMP-activated protein kinase (AMPK) complex and has been associated with cancer. However, little is known about the role AMPK plays in ACTs. We have evaluated how PRKAB2 is associated with clinical and biological characteristics in 63 pediatric patients with ACTs and conducted in vitro studies on the human NCI-H295R ACC cell line. An analysis of our cohort and the public ACC pediatric dataset GSE76019 showed that lower PRKAB2 expression was associated with relapse, death, metastasis, and lower event-free and overall survival rates. Multivariate analysis showed that PRKAB2 expression was an independent prognostic factor when associated with age, tumor weight and volume, and metastasis. In vitro tests on NCI-H295R cells demonstrated that Rottlerin, a drug that can activate AMPK, modulated several pathways in NCI-H295R cells, including AMPK/mTOR, Wnt/ß-catenin, SKP2, HH, MAPK, NFKB, and TNF. Treatment with Rottlerin decreased cell proliferation and migration, clonogenic capacity, and steroid production. Together, these results suggest that PRKAB2 is a potential prognostic marker in pediatric ACTs, and that Rottlerin is promising for investigating drugs that can act against ACTs.