Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 11: 616251, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362566

RESUMO

Gastric cancer is one of the most common malignancies ranks as the second leading cause of cancer-related mortality in the world. Cisplatin (DDP) is commonly used for gastric cancer treatment, whereas recurrence and metastasis are common because of intrinsic and acquired DDP-resistance. The aim of this study is to examine the effects of berberine on the DDP-resistance in gastric cancer and explore the underling mechanisms. In this study, we established the DDP-resistant gastric cancer cells, where the IC50 values of DDP in the BGC-823/DDP and SGC-7901/DDP were significantly higher than that in the corresponding parental cells. Berberine could concentration-dependently inhibited the cell viability of BGC-823 and SGC-7901 cells; while the inhibitory effects of berberine on the cell viability were largely attenuated in the DDP-resistant cells. Berberine pre-treatment significantly sensitized BGC-823/DDP and SGC-7901/DDP cells to DDP. Furthermore, berberine treatment concentration-dependently down-regulated the multidrug resistance-associated protein 1 and multi-drug resistance-1 protein levels in the BGC-823/DDP and SGC7901/DDP cells. Interestingly, the cell apoptosis of BGC-823/DDP and SGC-7901/DDP cells was significantly enhanced by co-treatment with berberine and DDP. The results from animals also showed that berberine treatment sensitized SGC-7901/DDP cells to DDP in vivo. Mechanistically, berberine significantly suppressed the PI3K/AKT/mTOR in the BGC-823/DDP and SGC-7901/DDP cells treated with DDP. In conclusion, we observed that berberine sensitizes gastric cancer cells to DDP. Further mechanistic findings suggested that berberine-mediated DDP-sensitivity may be associated with reduced expression of drug transporters (multi-drug resistance-1 and multidrug resistance-associated protein 1), enhanced apoptosis and repressed PI3K/AKT/mTOR signaling.

2.
Chem Biol Interact ; 315: 108886, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31682804

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies, and multidrug resistance (MDR) reduces the efficiency of anticancer drugs. Therefore, the development of novel anticancer drugs that are highly active against CRC with MDR is urgently needed. Our previous study showed that 5-(3,4,5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl) imidazol (BZML) is not a P-glycoprotein (P-gp) substrate and has a potent anticancer effect against paclitaxel -sensitive or -resistant non-small-cell lung cancer (NSCLC) in vitro and in vivo. In the present study, we found that BZML exhibited strong anticancer activity not only in sensitive CRC cells (SW480 and HCT-116 cells) but also in intrinsically drug-resistant CRC cells (Caco2 cells). In addition, by targeting the colchicine binding site, BZML inhibited tubulin polymerization, which induced G2/M phase arrest, and it caused DNA damage by directly targeting DNA or producing ROS. Further, BZML induced apoptosis through the time-dependent ROS-mediated mitochondrial apoptotic pathway in the CRC cells. Additionally, BZML inhibited P-gp-mediated drug efflux and enhanced the inhibition of the cell growth that had been induced by paclitaxel or doxorubicin in Caco2 cells. In summary, BZML is a multi-targeted anticancer drug that targets tubulin and DNA, and the mechanisms underlying its potent anticancer activity involve disrupting microtubule assembly, causing DNA damage, inducing cell cycle arrest and eventually activating the ROS-mediated mitochondrial apoptotic pathway in SW480, HCT-116 and Caco2 cells. Therefore, the novel compound BZML is a promising anticancer drug that has tremendous potential for CRC treatment, especially for the treatment of drug-resistant CRC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , DNA/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imidazóis/farmacologia , Tubulina (Proteína)/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Células CACO-2 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacologia
3.
Cell Death Dis ; 10(3): 218, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833546

RESUMO

Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Although extensive studies showed that luteolin exhibited antitumor effects against NSCLC, the mechanism has not been fully established. In the present study, we found that luteolin significantly reduced the expression of absent in melanoma 2 (AIM2) at both mRNA and protein levels leading to the suppression of AIM2 inflammasome activation, which induced G2/M phase arrest and inhibited epithelial-mesenchymal transition (EMT) in NSCLC. Furthermore, the inhibitory effects of luteolin on NSCLC cells were abolished by the knockdown of AIM2. On the contrary, the antitumor effects of luteolin could be notably reversed by the overexpression of AIM2. In addition, luteolin reduced poly(dA:dT)-induced caspase-1 activation and IL-1ß cleavage in NSCLC cells. These findings suggested that AIM2 was essential to luteolin-mediated antitumor effects. The antitumor effects of luteolin, which were closely associated with AIM2, were also confirmed in the A549 and H460 xenograft mouse models. Collectively, our study displayed that the antitumor effects of luteolin on NSCLC were AIM2 dependent and the downregulation of AIM2 might be an effective way for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ligação a DNA/metabolismo , Luteolina/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Xenoenxertos/metabolismo , Xenoenxertos/patologia , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Luteolina/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus
4.
Int J Biol Macromol ; 109: 329-337, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233713

RESUMO

Novel thermostable amylase need to be continuously explored with the improvement of industrial requirements. A new acidophilic and thermostable amylase producing bacterium isolated from spring was identified as Bacillus strain on the basis of 16S rDNA. The amylase was purified by ammonium sulphate precipitation, gel chromatography and anion exchange chromatography. SDS-PAGE revealed that the enzyme was monomeric with a molecular weight of 58 kDa. The amylase exhibited optimal activity at pH 5.0 and temperature 100 °C. Then the enzyme showed high stability in pH ranges 4.0-10.0 and more than 90% of maximal activity was found from 20 °C to 80 °C. Apart from good stability toward SDS and non-ionic detergent, the purified enzyme exhibited high compatibility with some inhibitors such as urea and EDTA. The results demonstrated the stability of the enzyme in different organic solvents. Moreover, we determined the amylase gene, compared the structure with α-amylase BAA and BLA and found some thermostability determinants in our enzyme. Overall, presenting various properties were including high thermostability, Ca2+-independency, broad temperature and pH profiles, organic-solvent tolerance as well as excellent stability with detergents. Such characteristics have not been reported for this type of enzyme, and the α-amylase will be a suitable candidate in industrial fields.


Assuntos
Bacillus licheniformis/enzimologia , alfa-Amilases/química , alfa-Amilases/metabolismo , Sequência de Aminoácidos , Bacillus licheniformis/classificação , Bacillus licheniformis/genética , Fenômenos Químicos , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Metais/química , Modelos Moleculares , Filogenia , Conformação Proteica , Solventes , Temperatura , alfa-Amilases/genética , alfa-Amilases/isolamento & purificação
5.
Oncol Lett ; 14(2): 1215-1222, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28789336

RESUMO

MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein-coding genes by partially binding to specific target sites of mRNAs. miRNAs perform important functions in complicated cellular biological processes and their abnormal expression is involved in various disorders, including cancer. Among the miRNAs, differential expression of miR-139-5p serves a significant role in tumorigenesis, metastasis and recurrence, thus suggesting that it may potentially be used as a promising biomarker for cancer diagnosis, prognosis and therapy. miR-139-5p is expected to serve as a biomarker to eventually be implemented in a clinical setting. In the present review, we focus on the importance of miR-139-5p in cancer, summarize the association between miR-139-5p expression level and diagnosis and prognosis, and discuss the potential therapeutic implications for the future.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa