RESUMO
This study aims to explore the chemical composition of Rehmanniae Radix braised with mild fire and compare the effect of processing method on the chemical composition of Rehmanniae Radix. To be specific, ultra-high performance liquid chromatography with linear ion trap-orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) was used to screen the chemical constituents of Rehmanniae Radix. The chemical constituents were identified based on the relative molecular weight and fragment ions, literature information, and Human Metabolome Database(HMDB). The ion peak area ratio of each component before and after processing was used as the index for the variation. SIMCA was employed to establish principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) models of different processed products. According to the PCA plot, OPLS-DA plot, and VIP value, the differential components before and after the processing were screened out. The changes of the content of differential components with the processing method were analyzed. A total of 66 chemical components were identified: 57 of raw Rehmanniae Radix, 55 of steamed Rehmanniae Radix, 55 of wine-stewed Rehmanniae Radix, 51 of repeatedly steamed and sundried Rehmanniae Radix Praeparata, 62 of traditional bran-braised Rehmanniae Radix, and 63 of electric pot-braised Rehmanniae Radix. Among them, the 9 flavonoids of braised Rehmanniae Radix were from Citri Reticulatae Pericarpium. PCA suggested significant differences in the chemical composition of Rehmanniae Radix Praeparata prepared with different processing methods. OPLS-DA screened out 32 chemical components with VIP value >1 as the main differential components. Among the differential components, 9 were unique to braised Rehmanniae Radix(traditional bran-braised, electric pot-braised) and the degradation rate of the rest in braised(traditional bran-braised, electric pot-braised) or repeatedly steamed and sundried Rehmanniae Radix was higher than that in the steamed or wine-stewed products. The results indicated the chemical species and component content of Rehmanniae Radix changed significantly after the processing. The 32 components, such as rehmapicrogenin, martynoside, jionoside D, aeginetic acid, hesperidin, and naringin, were the most important compounds to distinguish different processed products of Rehmanniae Radix. The flavonoids introduced by Citri Reticulatae Pericarpium as excipient may be the important material basis for the effectiveness of braised Rehmanniae Radix compared with other processed products.
Assuntos
Medicamentos de Ervas Chinesas , Rehmannia , Humanos , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/química , Rehmannia/química , Flavonoides/análiseRESUMO
Sini Decoction (SND) is the main prescription for treating Shaoyin disease in Zhang Zhongjing's Treatise on Typhoid diseases in Han Dynasty. It is composed of Aconitum carmichaeli Debeaux, Glycyrrhiza uralensis Fisch ex DC and Zingiber officinale Roscoe. It has the effects of warming middle-jiao to dispel cold and revive the yang for resuscitation. Nowadays, it is mainly used in diseases in cardiovascular system, nervous system, digestive system and so on. In this paper, the effect and mechanism of the compatibility of Aconitum carmichaelii, Glycyrrhiza uralensis Fisch ex DC and Zingiber officinale Roscoe in SND were described. The results showed that SND performed remarkbly on strengthening heart, promoting blood circulation as well as inhibiting cardiomyocyte apoptosis, anti-inflammatory and anti-hypothyroidism. The toxic effect of Aconitum carmichaelii was relieved by the combination of Glycyrrhiza uralensis Fisch ex DC and Zingiber officinale Roscoe. The mechanism of increasing efficiency and reducing toxicity after the compatibility of medicines in SND was discussed from the perspective of changes in biological effects and chemical compositions. In terms of biological effects, the mechanism of SND in treating heart failure, myocardial ischemia, myocardial hypertrophy and hypothyroidism and protecting cell injury were discussed. As to chemical composition changes, most studies have compared the changes of main components in Aconitum carmichaelii, Glycyrrhiza uralensis Fisch ex DC and Zingiber officinale Roscoe with the whole prescription, drug pair and single Decoction, which further confirmed the effect of Glycyrrhiza uralensis Fisch ex DC on the detoxification of Aconitum carmichaelii and the significance of compatibility efficiency of SND. For the application of differently processed varieties of Aconitum carmichaelii in SND, the treatment of different diseases has siginificant tendencies and differences in the selections of Aconitum carmichaelii processed varieties. This paper will lay a foundation on clarifying the mechanism of drug compatibility of SND and in the future, provide a reference for the proper selection of differently processed products of Aconitum carmichaelii in SND in order to exert better effects in clinical practices.
Assuntos
Aconitum , Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Aconitum/química , Medicamentos de Ervas Chinesas/farmacologia , Glycyrrhiza uralensis/químicaRESUMO
BACKGROUND Fructus aurantii is a flavonoid derived from Citrus aurantium (bitter orange) that is used in traditional Chinese medicine (TCM) to treat gastric motility disorders. This study aimed to investigate the effects of low-dose and high-dose decoctions of Fructus aurantii in a rat model of functional dyspepsia (FD). MATERIAL AND METHODS Sprague-Dawley rats (n=90) were divided into nine study groups: the control group, the FD model group, the domperidone-treated (Domp) group, the low-dose raw Fructus aurantii (FA-L) group, the high-dose raw Fructus aurantii (FA-H) group, the low-dose Fructus aurantii with stir-fried wheat bran (Bran-L) group, the high-dose Fructus aurantii with stir-fried wheat bran (Bran-H) group, the low-dose Fructus aurantii with stir-fried wheat bran and honey (Honey-L) group, and the high-dose Fructus aurantii with stir-fried wheat bran and honey (Honey-H) group. The FD rat model was established by semi-starvation, followed by tail damping, stimulation, and forced exercise with fatigue. Change in weight, rate of gastric emptying and intestinal propulsion, and serum levels of leptin, motilin, vasoactive intestinal peptide (VIP), gastrin, calcitonin gene-related peptide (CGRP), ghrelin, and cholecystokinin were compared between the groups. RESULTS In the FD model group, weight, rate of gastric emptying and intestinal propulsion significantly decreased, the expression of leptin, VIP and CGRP increased, and expression of motilin, gastrin, ghrelin, and cholecystokinin significantly decreased. Treatment with low-dose Fructus aurantii with stir-fried wheat bran significantly reversed these effects. CONCLUSIONS In the rat model of FD, low-dose Fructus aurantii with stir-fried wheat bran increased gastrointestinal motility and gastrointestinal hormone levels.
Assuntos
Citrus/química , Dispepsia/tratamento farmacológico , Animais , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , Esvaziamento Gástrico/efeitos dos fármacos , Esvaziamento Gástrico/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Medicina Tradicional Chinesa , Distribuição Aleatória , Ratos , Ratos Sprague-DawleyRESUMO
Background: Fructus aurantii (FA) is the dried, unripe fruit of the plant Citrus aurantium L. and its cultivated varieties. We investigated the drying effect of FA components and how this drying affect is achieved. Methods: We employed systems pharmacology to predict the components and targets of FA that produce its drying effect. These predictions were verified by computer simulation and animal experiments. In the latter, we measured the bodyweight, water consumption, urine output, fecal water content, rate of salivary secretion, and cross-sectional area of the long axis of the submandibular gland of mice. Immunohistochemistry was used to measure expression of aquaporin (AQP)5 in the submandibular gland, AQP2 in the kidney, and AQP3 in the colon. ELISA kits were used to measure the horizontal variation of cyclic adenosine monsophosphate (cAMP), cyclic guanosine monophosphate (cGMP) and interferon-γ. Results: Sixty-seven potentially active components of FA were screened out. FA could produce a drying effect after regulating 214 targets through 66 active components. A total of 870 gene ontology (GO) terms and 153 signaling pathways were identified. The hypoxia inducible factor-1 signaling pathway, phosphoinositide 3-kinase-protein kinase B (PI3K-AKT) signaling pathway, calcium signaling pathway, and Ras signaling pathway may have important roles in the drying effect of FA. Four components of FA were identified: sinensetin, tangeretin, 5-demethylnobiletin and chrysin. These four components could increase the serum level of interferon-γ and ratio of cyclic adenosine monophosphate:cyclic guanosine monophosphate in mice, and affect their water consumption, urine output, fecal water content and rate of salivary secretion. Conclusion: Four components of FA (tangeretin, sinensetin, chrysin, 5-Demethylmobiletin) were closely related to the Janus kinase-signal transducer and activator of transcription-3 (JAK-STAT3), PI3K-AKT, and the other signaling pathways. They can regulate the protein expression of JAK2, STAT3, PI3K, lymphocyte cell-specific protein-tyrosine kinase, vascular endothelial growth factor A, and protein kinase B1, affect water metabolism in the body and, finally, result in a drying effect.
RESUMO
Background: The unique pharmaceutical methods for the processing of botanical drugs according to the theory of traditional Chinese medicine (TCM) affect clinical syndrome differentiation and treatment. The objective of this study was to comprehensively elucidate the principles and mechanisms of an herbal processing method by investigating the alterations in the metabolites of Rhizoma Atractylodis Macrocephalae (AMR) processed by Aurantii Fructus Immaturus (AFI) decoction and to determine how these changes enhance the efficacy of aqueous extracts in treating functional dyspepsia (FD). Methods: A qualitative analysis of AMR before and after processing was conducted using UPLC-Q-TOF-MS/MS, and HPLC was employed for quantitative analysis. A predictive analysis was then conducted using a network analysis strategy to establish a botanical drug-metabolite-target-disease (BMTD) network and a protein-protein interaction (PPI) network, and the predictions were validated using an FD rat model. Results: A total of 127 metabolites were identified in the processed AMR (PAMR), and substantial changes were observed in 8 metabolites of PAMR after processing, as revealed by the quantitative analysis. The enhanced aqueous extracts of processed AMR (PAMR) demonstrate improved efficacy in treating FD, which indicates that this processing method enhances the anti-inflammatory properties and promotes gastric motility by modulating DRD2, SCF, and c-kit. However, this enhancement comes at the cost of attenuating the regulation of motilin (MTL), gastrin (GAS), acetylcholine (Ach), and acetylcholinesterase (AchE). Conclusion: Through this series of investigations, we aimed to unravel the factors influencing the efficacy of this herbal formulation in improving FD in clinical settings.
RESUMO
OBJECTIVE: To investigate the relationship between the cardiotonic activity of Fuzi (Radix Aconiti Lateralis Preparata, RALP) and its fingerprint determined by liquid chromatography-mass spectrometry (LC-MS). METHODS: First, the fingerprints of six processed products of RALP were established by high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS) followed by analysis of the principal component of the relative peak area of its common peaks. Next, the scores of the first five principal components were used as input for an artificial neural network (ANN). Additionally, the therapeutic effect of RALP was assessed by measuring the hemodynamic indexes of heart failure model rats. Subsequently, fluorescence semi-quantitative polymerase chain reaction and an enzyme-linked immunosorbent assay kit were used to determine the effects of RALP-processed products on the serum levels of noradrenaline (NA), angiotensin-â (Ang-â ), and the expression of ß-norepinephrine receptor mRNA (ß-NRm) in the rat cardiac tissues. P < 0.05 was used as the output of the ANN. Finally, a network was constructed to display the relationship between the LC-MS fingerprints and the cardiotonic activity of the RALP-processed products. RESULTS: Several types of RALPs can improve diastolic function, systolic function and heart rate. On the basis of the findings from the principal component analysis (PCA) of 16 common peaks of fingerprints of six RALP-processed products, it was revealed that the first five principal components may include 100% of the information of the original data. As observed from the multilayer perceptron neural network analysis, principal component 4 presented with the strongest effects on serum levels of NA and Ang-â in rats, while principal component 1 exerted the greatest effect on ß-NRm expression in cardiac tissue. CONCLUSION: The key findings obtained from this study indicated that the network constructed by the PCA-ANN may predict pharmacodynamic effects of the main ingredients of Traditional Chinese Medicine (TCM). This method may serve as a new approach to identify the relationship between LC-MS fingerprints and the pharmacodynamic effects of TCM ingredients.
Assuntos
Aconitum/química , Cardiotônicos/química , Medicamentos de Ervas Chinesas/química , Insuficiência Cardíaca/tratamento farmacológico , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Animais , Cardiotônicos/administração & dosagem , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/administração & dosagem , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Espectrometria de Massas , Norepinefrina/genética , Norepinefrina/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos/genética , Receptores Adrenérgicos/metabolismoRESUMO
Objective: According to the treatment records of Yang deficiency syndrome (YDS) with characteristic decoction pieces of lateral root of Aconitum carmichaelii-Yinfupian (YF) in traditional Chinese medicine prepare school, known as "Jianchangbang". The aim of this study was to investigate differences in the composition and therapeutic mechanism of the unprocessed lateral root of Aconitum carmichaelii (ULRA) and its processed product (YF). Methods: Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and orthogonal partial least squares discriminant analysis method were used to determine and screen the main components of ULRA and YF. Changes in the histological structure and morphology of gonads in rats were observed using hematoxylin-eosin. Enzyme-linked immunosorbent assay was used to determine the contents of serum cyclic adenosine monophosphate and cyclic guanosine monophosphate in YDS rats treated with ULRA and YF. Tandem mass tag proteomics analysis was used to identify the differentially expressed proteins in YDS rats treated with ULRA and YF. Results: Both ULRA and YF exerted certain therapeutic effects on rats with YDS. They improved the gonadal morphology and increased the contents of serum cyclic adenosine monophosphate and cyclic guanosine monophosphate. After processing of ULRA into YF, the content of C19-diester-diterpenoid alkaloids decreased (converted into C19-monoester-diterpenoid alkaloids and C19-alkylol amine-diterpenoid alkaloids), whereas that of C20-diterpene alkaloids increased. Proteomics analysis showed that cytochrome P450 and aldehyde oxidase 3 (AOX3) were downregulated, whereas cathepsin G (CTSG) was upregulated in rats with YDS. Treatment with ULRA mainly downregulated the expression of α-actinin, fast skeletal troponin, creatine kinase, and myosin. Treatment with YF mainly upregulated the expression of mitochondrial ribosomal protein and mitochondrial inner membrane protein. Conclusion: ULRA and YF exerted good therapeutic effects on YDS; the main difference in components between these preparations was in C19-diterpenoid alkaloids. ULRA mainly acts on the muscle contraction-related proteins and is closely related to inflammation and myocardial injury. YF mainly acts on the mitochondrial proteins and is closely related to adenosine triphosphate energy metabolism.
RESUMO
Migraine is a disease whose aetiology and mechanism are not yet clear. Chuanxiong Rhizoma (CR) is employed in traditional Chinese medicine (TCM) to treat various disorders. CR is effective for migraine, but its active compounds, drug targets, and exact molecular mechanism remain unclear. In this study, we used the method of systems pharmacology to address the above issues. We first established the drug-compound-target-disease (D-C-T-D) network and protein-protein interaction (PPI) network related to the treatment of migraine with CR and then established gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The results suggest that the treatment process may be related to the regulation of inflammation and neural activity. The docking results also revealed that PTGS2 and TRPV1 could directly bind to the active compounds that could regulate them. In addition, we found that CR affected 11 targets that were more highly expressed in the liver or heart but were the lowest in the whole brain. It also expounds the description of CR channel tropism in TCM theory from these angles. These findings not only indicate that CR can be developed as a potential effective drug for the treatment of migraine but also demonstrate the application of systems pharmacology in the discovery of herbal-based disease therapies.
RESUMO
OBJECTIVE: Patients with gastrointestinal disorders commonly suffer from poor treatment outcomes and adverse effects of traditional pharmacological therapy. Herbal medicine is a favorable alternative due to the low risk of side effects. This study was performed to explore the antiemetic effects and the improvement effect on gastrointestinal function of components of three ginger juice excipients. METHODS: The compositions were analyzed by liquid chromatograph mass spectrometer (LC-MS), especially the gingerols of dried ginger juice (DGJ), fresh ginger juice (FGJ), and fresh ginger boiled juice (FGBJ). Furthermore, the respective gastrointestinal effects on rat models with functional dyspepsia (FD) were compared. RESULTS: The 6-keto-PGF1α levels in the serum of the treated groups were significantly reduced (p < 0.05), as compared with the control group. Compared with the cisplatin group, there was an apparent reduction in kaolin intake for DGJ, FGJ, and FGBJ (p < 0.01; p < 0.01; p < 0.05). The intestinal propulsive rate of the rats in the treated group was significantly higher than that in the control group (p < 0.05). Ginger juices significantly improved gastrointestinal function in rats. Eight common components were found in DGJ, FGJ, and FGBJ, among which 6-paradol, 10-gingerol, and 12-shogaol led to inhibited gastric mucosal damage function effect according to the Pearson correlation analysis. Only 6-shogaol was found to have a positive correlation with gastrointestinal function effect through Pearson correlation analysis. CONCLUSION: Ginger juice should be recommended for the medicinal materials used in the treatment of concurrent symptoms of FD.