RESUMO
Accurate metabolite annotation and false discovery rate (FDR) control remain challenging in large-scale metabolomics. Recent progress leveraging proteomics experiences and interdisciplinary inspirations has provided valuable insights. While target-decoy strategies have been introduced, generating reliable decoy libraries is difficult due to metabolite complexity. Moreover, continuous bioinformatics innovation is imperative to improve the utilization of expanding spectral resources while reducing false annotations. Here, we introduce the concept of ion entropy for metabolomics and propose two entropy-based decoy generation approaches. Assessment of public databases validates ion entropy as an effective metric to quantify ion information in massive metabolomics datasets. Our entropy-based decoy strategies outperform current representative methods in metabolomics and achieve superior FDR estimation accuracy. Analysis of 46 public datasets provides instructive recommendations for practical application.
Assuntos
Algoritmos , Espectrometria de Massas em Tandem , Entropia , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Biologia Computacional/métodos , Bases de Dados de ProteínasRESUMO
BACKGROUND: As a gold-standard quantitative technique based on mass spectrometry, multiple reaction monitoring (MRM) has been widely used in proteomics and metabolomics. In the analysis of MRM data, as no peak picking algorithm can achieve perfect accuracy, manual inspection is necessary to correct the errors. In large cohort analysis scenarios, the time required for manual inspection is often considerable. Apart from the commercial software that comes with mass spectrometers, the open-source and free software Skyline is the most popular software for quantitative omics. However, this software is not optimized for manual inspection of hundreds of samples, the interactive experience also needs to be improved. RESULTS: Here we introduce MRMPro, a web-based MRM data analysis platform for efficient manual inspection. MRMPro supports data analysis of MRM and schedule MRM data acquired by mass spectrometers of mainstream vendors. With the goal of improving the speed of manual inspection, we implemented a collaborative review system based on cloud architecture, allowing multiple users to review through browsers. To reduce bandwidth usage and improve data retrieval speed, we proposed a MRM data compression algorithm, which reduced data volume by more than 60% and 80% respectively compared to vendor and mzML format. To improve the efficiency of manual inspection, we proposed a retention time drift estimation algorithm based on similarity of chromatograms. The estimated retention time drifts were then used for peak alignment and automatic EIC grouping. Compared with Skyline, MRMPro has higher quantification accuracy and better manual inspection support. CONCLUSIONS: In this study, we proposed MRMPro to improve the usability of manual calibration for MRM data analysis. MRMPro is free for non-commercial use. Researchers can access MRMPro through http://mrmpro.csibio.com/ . All major mass spectrometry formats (wiff, raw, mzML, etc.) can be analyzed on the platform. The final identification results can be exported to a common.xlsx format for subsequent analysis.
Assuntos
Algoritmos , Compressão de Dados , Humanos , Calibragem , Espectrometria de Massas/métodos , Software , InternetRESUMO
Several lossy compressors have achieved superior compression rates for mass spectrometry (MS) data at the cost of storage precision. Currently, the impacts of precision losses on MS data processing have not been thoroughly evaluated, which is critical for the future development of lossy compressors. We first evaluated different storage precision (32 bit and 64 bit) in lossless mzML files. We then applied 10 truncation transformations to generate precision-lossy files: five relative errors for intensities and five absolute errors for m/z values. MZmine3 and XCMS were used for feature detection and GNPS for compound annotation. Lastly, we compared Precision, Recall, F1 - score, and file sizes between lossy files and lossless files under different conditions. Overall, we revealed that the discrepancy between 32 and 64 bit precision was under 1%. We proposed an absolute m/z error of 10-4 and a relative intensity error of 2 × 10-2, adhering to a 5% error threshold (F1 - scores above 95%). For a stricter 1% error threshold (F1 - scores above 99%), an absolute m/z error of 2 × 10-5 and a relative intensity error of 2 × 10-3 were advised. This guidance aims to help researchers improve lossy compression algorithms and minimize the negative effects of precision losses on downstream data processing.
Assuntos
Compressão de Dados , Espectrometria de Massas , Metabolômica , Espectrometria de Massas/métodos , Metabolômica/métodos , Metabolômica/estatística & dados numéricos , Compressão de Dados/métodos , Software , Humanos , AlgoritmosRESUMO
In the era of continuous development in Internet of Things (IoT) technology, smart services are penetrating various facets of societal life, leading to a growing demand for interconnected devices. Many contemporary devices are no longer mere data producers but also consumers of data. As a result, massive amounts of data are transmitted to the cloud, but the latency generated in edge-to-cloud communication is unacceptable for many tasks. In response to this, this paper introduces a novel contribution-a layered computing network built on the principles of fog computing, accompanied by a newly devised algorithm designed to optimize user tasks and allocate computing resources within rechargeable networks. The proposed algorithm, a synergy of Lyapunov-based, dynamic Long Short-Term Memory (LSTM) networks, and Particle Swarm Optimization (PSO), allows for predictive task allocation. The fog servers dynamically train LSTM networks to effectively forecast the data features of user tasks, facilitating proper unload decisions based on task priorities. In response to the challenge of slower hardware upgrades in edge devices compared to user demands, the algorithm optimizes the utilization of low-power devices and addresses performance limitations. Additionally, this paper considers the unique characteristics of rechargeable networks, where computing nodes acquire energy through charging. Utilizing Lyapunov functions for dynamic resource control enables nodes with abundant resources to maximize their potential, significantly reducing energy consumption and enhancing overall performance. The simulation results demonstrate that our algorithm surpasses traditional methods in terms of energy efficiency and resource allocation optimization. Despite the limitations of prediction accuracy in Fog Servers (FS), the proposed results significantly promote overall performance. The proposed approach improves the efficiency and the user experience of Internet of Things systems in terms of latency and energy consumption.
RESUMO
Many human connexin50 (Cx50) mutants have been linked to cataracts including two carboxyl terminus serine mutants that are known phosphorylation sites in the lens (Cx50S258F and Cx50S259Y). To examine the behavior of these mutants and the role of phosphorylation at these positions, we stably transfected HeLa cells with cataract-linked and phosphorylation-mimicking (Cx50S258D and Cx50S259D) Cx50 mutants. We observed that gap junctional plaques were rarely detected in Cx50S258F-expressing and Cx50S259Y-expressing cells compared with wild-type cells. In contrast, gap junction abundance and size were greatly increased for Cx50S258D and Cx50S259D mutants. Cx50S258F and Cx50S259Y supported very low levels of gap junctional coupling, whereas Cx50S258D and Cx50S259D supported extensive intercellular communication. Furthermore, Cx50 levels as detected by immunoblotting were lower in Cx50S258F and Cx50S259Y mutants than in the wild-type or the aspartate substitution mutants, and chloroquine or ammonium chloride treatment significantly increased Cx50S258F and Cx50S259Y protein levels, implying participation of the lysosome in their increased degradation. Alanine substitution of amino acids within a predicted tyrosine-based sorting signal in Cx50S258F and Cx50S259Y increased levels of gap junctional plaques and intercellular transfer of neurobiotin. These results suggest that the absence of phosphorylatable serines at these positions exposes a sorting signal leading to lysosomal degradation of Cx50, whereas phosphorylation at these sites conceals this signal and allows targeting of Cx50 to the plasma membrane and stabilization of gap junction plaques. We propose that in the lens, degradation of Cx50S258F and Cx50S259Y decreases Cx50 levels at the plasma membrane and consequently Cx50 function, leading to cataracts.
Assuntos
Catarata , Conexinas , Cristalino , Mutação , Catarata/genética , Catarata/metabolismo , Conexinas/genética , Conexinas/metabolismo , Proteínas do Olho/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Células HeLa , Humanos , Cristalino/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Serina/genética , Serina/metabolismoRESUMO
Connexin-50 (Cx50) is among the most frequently mutated genes associated with congenital cataracts. Although most of these disease-linked variants cause loss of function because of misfolding or aberrant trafficking, others directly alter channel properties. The mechanistic bases for such functional defects are mostly unknown. We investigated the functional and structural properties of a cataract-linked mutant, Cx50T39R (T39R), in the Xenopus oocyte system. T39R exhibited greatly enhanced hemichannel currents with altered voltage-gating properties compared to Cx50 and induced cell death. Coexpression of mutant T39R with wild-type Cx50 (to mimic the heterozygous state) resulted in hemichannel currents whose properties were indistinguishable from those induced by T39R alone, suggesting that the mutant had a dominant effect. Furthermore, when T39R was coexpressed with Cx46, it produced hemichannels with increased activity, particularly at negative potentials, which could potentially contribute to its pathogenicity in the lens. In contrast, coexpression of wild-type Cx50 with Cx46 was associated with a marked reduction in hemichannel activity, indicating that it may have a protective effect. All-atom molecular dynamics simulations indicate that the R39 substitution can form multiple electrostatic salt-bridge interactions between neighboring subunits that could stabilize the open-state conformation of the N-terminal (NT) domain while also neutralizing the voltage-sensing residue D3 as well as residue E42, which participates in loop gating. Together, these results suggest T39R acts as a dominant gain-of-function mutation that produces leaky hemichannels that may cause cytotoxicity in the lens and lead to development of cataracts.
Assuntos
Catarata , Cristalino , Animais , Catarata/congênito , Catarata/genética , Catarata/metabolismo , Conexinas/genética , Conexinas/metabolismo , Proteínas do Olho/metabolismo , Junções Comunicantes/metabolismo , Humanos , Cristalino/metabolismo , Mutação de Sentido Incorreto , XenopusRESUMO
BACKGROUND: Oral squamous cell carcinoma (OSCC) is a normal form of mouth cancer, comprising the majority of oral cancers. A large number of long non-coding RNAs (lncRNAs) have been reported due to their oncogenic function in cancers. Recent studies show that lncRNA CCHE1 is an oncogene in a wide range of cancers. Whether CCHE1 accelerates the progression of OSCC is still undiscovered. METHODS: The qRT-PCR analysis was used to determine CCHE1, miR-922, and PAK2 expression levels. CCK8 and colony formation assays were applied to evaluate OSCC cell proliferative ability. Transwell assay was performed to investigate the capability of cell migration and invasion. Cell apoptosis was assessed by flow cytometry analysis. The distribution of CCHE1 in OSCC cells was confirmed via subcellular fractionation assay. Luciferase reporter assay was used to verify the connection between miR-922 and CCHE1 or PAK2. RESULTS: qRT-PCR analysis identified the upregulation of CCHE1 in OSCC cells. Knockdown of CCHE1 curbed the proliferation, migration, and invasion and hastened the apoptosis in OSCC cell lines. Moreover, it was found that miR-922 could interact with CCHE1. Besides, PAK2 was identified as the target gene of miR-922 and its expression was negatively modulated by miR-922 and positively regulated by CCHE1. Restoration assay manifested that the suppressing influence of CCHE1 depletion on OSCC progression was rescued by amplified PAK2. CONCLUSIONS: CCHE1 increases the expression of PAK2 to promote the progression of OSCC by competitively binding to miR-922 in OSCC cells.
Assuntos
Carcinoma de Células Escamosas , MicroRNAs/genética , Neoplasias Bucais , RNA Longo não Codificante/genética , Quinases Ativadas por p21/genética , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Neoplasias Bucais/genéticaRESUMO
An N-terminal mutant of connexin46 (T19M) alters a highly conserved threonine and has been linked to autosomal dominant cataracts. To study the cellular and functional consequences of substitution of this amino acid, T19M was expressed in Xenopus oocytes and in HeLa cells. Unlike wild-type Cx46, T19M did not induce intercellular conductances in Xenopus oocytes. In transfected HeLa cells, T19M was largely localized within the cytoplasm, with drastically reduced formation of gap junction plaques. Expression of rat T19M was cytotoxic, as evidenced by an almost complete loss of viable cells expressing the mutant protein by 48-72 h following transfection. When incubated in medium containing physiological concentrations of divalent cations, T19M-expressing cells showed increased uptake of DAPI as compared with cells expressing wild-type Cx46, suggesting aberrant connexin hemi-channel activity. Time-lapse and dye uptake studies suggested that T19M hemi-channels had reduced sensitivity to Ca(2+). Whole cell patch clamp studies of single transfected HeLa cells demonstrated that rat T19M formed functional hemi-channels with altered voltage-dependent gating. These data suggest that T19M causes cataracts by loss of gap junctional channel function and abnormally increased hemi-channel activity. Furthermore, they implicate this conserved threonine in both gap junction plaque formation and channel/hemi-channel gating in Cx46.
Assuntos
Conexinas/metabolismo , Junções Comunicantes/metabolismo , Ativação do Canal Iônico/fisiologia , Animais , Catarata/genética , Catarata/metabolismo , Conexinas/genética , Junções Comunicantes/fisiologia , Células HeLa , Humanos , Ativação do Canal Iônico/genética , Mutação , Ratos , Xenopus laevisRESUMO
The lens is proposed to have an internal microcirculation system consisting of continuously circulating ionic fluxes that play an essential role in maintaining lens transparency. One of the key components of this system is the sodium leak conductance. Here we investigate the contribution of Cx46 hemichannels to the basal membrane permeability of peripheral fiber cells isolated from transgenic mouse lenses lacking Cx50 or both Cx50 and Cx46 (dKO) using the whole cell patch-clamp technique. Our results show that Cx46 hemichannels were largely closed at a resting voltage of -60 mV in the presence of millimolar divalent cation concentrations. However, even though the vast majority of these channels were closed at -60 mV, a small, persistent, inward current could still be detected. This current could be mostly blocked by exposure to 1 mM La(3+) and was not observed in fiber cells isolated from dKO mouse lenses suggesting that it was due to Cx46 hemichannels. In addition, Cx50(-/-) fiber cells showed increased open channel noise and a depolarized resting potential compared with dKO fiber cells. Exposure of Cx50(-/-) fiber cells to La(3+) hyperpolarized the resting potential to -58 mV, which is similar to the value of resting potential measured in dKO fiber and significantly reduced the open channel noise. In conclusion, these results suggest that Cx46 hemichannels may contribute to the sodium leak conductance in lens fiber cells.
Assuntos
Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Conexinas/metabolismo , Cristalino/metabolismo , Sódio/metabolismo , Animais , Conexinas/deficiência , Conexinas/genética , Proteínas do Olho/genética , Ativação do Canal Iônico , Transporte de Íons , Cristalino/citologia , Potenciais da Membrana , Camundongos , Camundongos KnockoutRESUMO
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Despite the development of new treatment plans in recent years, the prognosis for osteosarcoma patients has not significantly improved. Therefore, it is crucial to establish a robust preclinical model with high fidelity. The patient-derived xenograft (PDX) model faithfully preserves the genetic, epigenetic, and heterogeneous characteristics of human malignancies for each patient. Consequently, PDX models are considered authentic in vivo models for studying various cancers in transformation studies. This article presents a comprehensive protocol for creating and maintaining a PDX mouse model that accurately mirrors the morphological features of human osteosarcoma. This involves the immediate transplantation of freshly resected human osteosarcoma tissue into immunocompromised mice, followed by successive passaging. The described model serves as a platform for studying the growth, drug resistance, relapse, and metastasis of osteosarcoma. Additionally, it aids in screening the target therapeutics and establishing personalized treatment schemes.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Criança , Humanos , Animais , Camundongos , Xenoenxertos , Ensaios Antitumorais Modelo de Xenoenxerto , Recidiva Local de Neoplasia , Osteossarcoma/genética , Osteossarcoma/patologia , Modelos Animais de Doenças , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologiaRESUMO
Decoction formula is the most commonly used dosage form in traditional Chinese medicine and applied in clinical practice for thousands of years by trans-oral administration, which is characterized by quick effect, easy absorption, and individualized treatment based on the specific syndromes of patients. The quality of the decoction formula is directly responsible for the clinical efficacy of traditional Chinese medicine; therefore, the standardization process of the decoction formula is important to avoid differences in decoction quality caused by subjective factors. Meanwhile, due to the limitations of performing clinical experiments, small animals bearing human diseases, such as mice, are often used in medical research to explore the therapeutic efficacy and comprehensive mechanisms of different interventions, including the decoction formula for traditional Chinese medicine. Consequently, as an important trans-oral administration method, the skilled gavage technique is particularly important to avoid potential esophagus damage and drug spillage, which will ensure an equal amount of medicine being administered to each model animal, leading to accurate experimental results. Furthermore, the standardized method of decoction formula preparation and skilled gavage strategy are necessary to protect animal welfare and minimize the number of animals used. Here, we reported a detailed standardization process of the decoction formula and gavage technique with Yiqi Jiedu decoction in osteosarcoma mouse model as an example. The efficacy was evaluated by the tumor volume. This protocol will maximize animal protection and improve the reliability of research data, therefore providing effective strategies for future investigating therapeutic efficacy and molecular mechanisms of decoction formula for traditional Chinese medicine in vivo.
Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Osteossarcoma , Animais , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Camundongos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicina Tradicional Chinesa/métodos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Modelos Animais de Doenças , Administração OralRESUMO
Chinese hamster ovary (CHO) cells are widely used to produce complex biopharmaceuticals. Improving their productivity is necessary to fulfill the growing demand for such products. One way to enhance productivity is by cultivating cells at high densities, but inhibitory by-products, such as metabolite derivatives from amino acid degradation, can hinder achieving high cell densities. This research examines the impact of these inhibitory by-products on high-density cultures. We cultured X1 and X2 CHO cell lines in a small-scale semi-perfusion system and introduced a mix of inhibitory by-products on day 10. The X1 and X2 cell lines were chosen for their varied responses to the by-products; X2 was susceptible, while X1 survived. Proteomics revealed that the X2 cell line presented changes in the proteins linked to apoptosis regulation, cell building block synthesis, cell growth, DNA repair, and energy metabolism. We later used the AB cell line, an apoptosis-resistant cell line, to validate the results. AB behaved similar to X1 under stress. We confirmed the activation of apoptosis in X2 using a caspase assay. This research provides insights into the mechanisms of cell death triggered by inhibitory by-products and can guide the optimization of CHO cell culture for biopharmaceutical manufacturing.
Assuntos
Aminoácidos , Apoptose , Cricetinae , Animais , Cricetulus , Células CHO , Apoptose/genética , Proliferação de CélulasRESUMO
Mutations in connexin 46 are associated with congenital cataracts. The purpose of this project was to characterize cellular and functional properties of two congenital cataract-associated mutations located in the NH2 terminus of connexin 46: Cx46D3Y and Cx46L11S, which we found localized to gap junctional plaques like wild-type Cx46 in transfected HeLa cells. Dual two-microelectrode-voltage-clamp studies of Xenopus oocyte pairs injected with wild-type or mutant rat Cx46 showed that oocyte pairs injected with D3Y or L11S cRNA failed to induce gap junctional coupling, whereas oocyte pairs injected with Cx46 showed high levels of coupling. D3Y, but not L11S, functionally paired with wild-type Cx46. To determine whether coexpression of D3Y or L11S affected the junctional conductance produced by wild-type lens connexins, we studied pairs of oocytes coinjected with equal amounts of mutant and wild-type connexin cRNA. Expression of D3Y or L11S almost completely abolished gap junctional coupling induced by Cx46. In contrast, expression of D3Y or L11S failed to inhibit junctional conductance induced by Cx50. To examine effects of the D3Y and L11S mutations on hemichannel activity, hemichannel currents were measured in connexin cRNA-injected oocytes. Oocytes expressing D3Y exhibited reduced hemichannel activity as well as alterations in voltage gating and charge selectivity while oocytes expressing L11S showed no hemichannel activity. Moreover, coexpression of mutant with wild-type Cx50 or Cx46 gave rise to hemichannels with distinct electrophysiological properties, suggesting that the mutant connexins were forming heteromeric channels with wild-type connexins. These data suggest D3Y and L11S cause cataracts by similar but not identical mechanisms.
Assuntos
Catarata/genética , Conexinas/genética , Mutação de Sentido Incorreto , Animais , Catarata/congênito , Catarata/patologia , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/fisiologia , Células HeLa , Humanos , Ativação do Canal Iônico , Potenciais da Membrana , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Ratos , Homologia Estrutural de Proteína , Xenopus laevisRESUMO
Spirocitrinols A (1) and B (2), two new citrinin-derived metabolites possessing a spiro[chromane-2,3'-isochromane] skeleton, were isolated from cultures of Penicillium citrinum. Their structures were elucidated primarily by NMR experiments. The absolute configurations of 1 and 2 were assigned by electronic circular dichroism calculations. Compound 2 is the first naturally occurring trimeric citrinin derivative with a spiro[chromane-2,3'-isochromane] core. Compound 1 showed modest cytotoxicity against A549 human tumor cells.
RESUMO
With the continuous improvement of biological detection technology, the scale of biological data is also increasing, which overloads the central-computing server. The use of edge computing in 5G networks can provide higher processing performance for large biological data analysis, reduce bandwidth consumption and improve data security. Appropriate data compression and reading strategy becomes the key technology to implement edge computing. We introduce the column storage strategy into mass spectrum data so that part of the analysis scenario can be completed by edge computing. Data produced by mass spectrometry is a typical biological big data based. A blood sample analysed by mass spectrometry can produce a 10 gigabytes digital file. By introducing the column storage strategy and combining the related prior knowledge of mass spectrometry, the structure of the mass spectrum data is reorganized, and the result file is effectively compressed. Data can be processed immediately near the scientific instrument, reducing the bandwidth requirements and the pressure of the central server. Here, we present Aird-Slice, a mass spectrum data format using the column storage strategy. Aird-Slice reduces volume by 48% compared to vendor files and speeds up the critical computational step of ion chromatography extraction by an average of 116 times over the test dataset. Aird-Slice provides the ability to analyze biological data using an edge computing architecture on 5G networks.
Assuntos
Big Data , Compressão de Dados , Análise de DadosRESUMO
Carbon-based all-inorganic perovskite solar cells (C-IPSCs) are stable, upscalable and have low CO2-footprint to fabricate. However, they are inefficient in converting light to electricity due to poor hole extraction at perovskite/carbon interface. Here we enable an efficient hole extraction in C-IPSCs with the aid of inorganic p-type nickel oxide nanoparticles (NiOx-NPs) at the interface and in carbon. By tailoring the work function (WF) of carbon, and reducing the energy-level misalignment at the perovskite/carbon interface, NiOx-NPs enable efficient hole transfer, reduce charge recombination and minimize energy loss. As a result, we report 15.01% and 11.02% efficiencies for CsPbI2Br and CsPbIBr2 C-IPSCs, respectively, with a high open-circuit voltage of â¼1.3 V. Unencapsulated interface-modified CsPbI2Br devices maintained 92.8% of their initial efficiency at ambient conditions after nearly 2,000 h; and 94.6% after heating at 60 °C for 170 h. This strategy to tailor carbon interface with perovskite offers an important knob in improving C-IPSCs performance.
RESUMO
During accommodation, the lens changes focus by altering its shape following contraction and relaxation of the ciliary muscle. At the cellular level, these changes in shape may be accompanied by fluid flow in and out of individual lens cells. We tested the hypothesis that some of this flow might be directly modulated by pressure-activated channels. In particular, we used the whole cell patch clamp technique to test whether calcium-activated-chloride channels (CaCCs) expressed in differentiating lens cells are activated by mechanical stimulation. Our results show that mechanical stress, produced by focally perfusing the lens cell at a constant rate, caused a significant increase in a chloride current that could be fully reversed by stopping perfusion. The time course of activation and recovery from activation of the flow-induced current occurred rapidly over a time frame similar to that of accommodation. The flow-induced current could be inhibited by the TMEM16A specific CaCC blocker, Ani9, suggesting that the affected current was predominantly due to TMEM16A chloride channels. The mechanism of action of mechanical stress did not appear to involve calcium influx through other mechanosensitive ion channels since removal of calcium from the bath solution failed to block the flow-induced chloride current. In conclusion, our results suggest that CaCCs in the lens can be rapidly and reversibly modulated by mechanical stress, consistent with their participation in regulation of volume in this organ.
RESUMO
Gap junction channels, which are made of connexins, are critical for intercellular communication, a function that may be disrupted in a variety of diseases. We studied the consequences of two cataract-associated mutations at adjacent positions at the first extracellular boundary in human connexin50 (Cx50), W45S and G46V. Both of these mutants formed gap junctional plaques when they were expressed in HeLa cells, suggesting that they trafficked to the plasma membrane properly. However, their functional properties differed. Dual two-microelectrode voltage-clamp studies showed that W45S did not form functional intercellular channels in paired Xenopus oocytes or hemichannel currents in single oocytes. When W45S was coexpressed with wild-type Cx50, the mutant acted as a dominant negative inhibitor of wild-type function. In contrast, G46V formed both functional gap junctional channels and hemichannels. G46V exhibited greatly enhanced currents compared with wild-type Cx50 in the presence of physiological calcium concentrations. This increase in hemichannel activity persisted when G46V was coexpressed with wild-type lens connexins, consistent with a dominant gain of hemichannel function for G46V. These data suggest that although these two mutations are in adjacent amino acids, they have very different effects on connexin function and cause disease by different mechanisms: W45S inhibits gap junctional channel function; G46V reduces cell viability by forming open hemichannels.
Assuntos
Catarata/genética , Conexinas/genética , Proteínas do Olho/genética , Mutação , Animais , Sequência de Bases , Cálcio/fisiologia , Catarata/fisiopatologia , Conexinas/fisiologia , Fenômenos Eletrofisiológicos/genética , Proteínas do Olho/fisiologia , Feminino , Junções Comunicantes/genética , Junções Comunicantes/fisiologia , Células HeLa , Humanos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Xenopus laevisRESUMO
PURPOSE: The aim of this study was the genetic, cellular, and physiological characterization of a connexin50 (CX50) variant identified in a child with congenital cataracts. METHODS: Lens material from surgery was collected and used for cDNA production. Genomic DNA was prepared from blood obtained from the proband and her parents. PCR amplified DNA fragments were sequenced and characterized by restriction digestion. Connexin protein distribution was studied by immunofluorescence in transiently transfected HeLa cells. Formation of functional channels was assessed by two-microelectrode voltage-clamp in cRNA-injected Xenopus oocytes. RESULTS: Ophthalmologic examination showed that the proband suffered from bilateral white, diffuse cataracts, but the parents were free of lens opacities. Direct sequencing of the PCR product produced from lens cDNA showed that the proband was heterozygous for a G>T transition at position 741 of the GJA8 gene, encoding the exchange of methionine for isoleucine at position 247 of CX50 (CX50I247M). The mutation was confirmed in the genomic DNA, but it was also present in the unaffected mother. When expressed in HeLa cells, both wild type CX50 and CX50I247M formed gap junction plaques. Both CX50 and CX50I247M induced gap junctional currents in pairs of Xenopus oocytes. CONCLUSIONS: Although the CX50I247M substitution has previously been suggested to cause cataracts, our genetic, cellular, and electrophysiological data suggest that this allele more likely represents a rare silent, polymorphic variant.
Assuntos
Alelos , Substituição de Aminoácidos/genética , Catarata/genética , Conexinas/genética , Proteínas do Olho/genética , Mutação/genética , Polimorfismo Genético , Adulto , Idoso , Sequência de Aminoácidos , Sequência de Bases , Conexinas/química , Proteínas do Olho/química , Família , Feminino , Junções Comunicantes/metabolismo , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Mutantes , Linhagem , TransfecçãoRESUMO
Purpose: Chloride channels have been proposed to play an important role in the regulation of lens volume. Unfortunately, little information is available about the molecular identity of these channels or how they are regulated in the lens due to the difficulties in isolating mouse fiber cells. Recently, our laboratory has developed a new technique for isolating these cells by using transgenic mouse lenses that lack both Cx50 and Cx46. The purpose of this study was to test the hypothesis that newly differentiating mouse fiber cells express calcium-activated chloride channels (CaCCs) by using this technique. Methods: Differentiating fiber cells were isolated from lenses of double knockout mice that lack both Cx50 and Cx46 by using collagenase. Membrane currents were studied using the whole-cell patch clamp technique. The molecular identity and distribution of CaCCs were investigated using RT-PCR and immunofluorescence. Results: Our electrophysiologic experiments suggest that peripheral fiber cells express a calcium-activated chloride current. The voltage gating properties, calcium sensitivity, and pharmacologic properties of this current resembled those of TMEM16 CaCCs. RT-PCR analysis demonstrated the presence of TMEM16A and TMEM16B transcripts in wild-type and double knockout mouse lenses. Both TMEM16A and TMEM16B proteins were detected in the differentiating epithelial cells and newly elongating fiber cells near the equator of the lens by immunohistochemistry. Conclusions: Our results demonstrate that membrane conductance of peripheral fiber cells contain CaCCs that can be attributed to TMEM16A and TMEM16B. Given their critical role in volume regulation in other tissues, we speculate that these channels play a similar role in the lens.