Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(2): 610-617, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29058435

RESUMO

Low-cost transition-metal dichalcogenides (MS2) have attracted great interest as alternative catalysts for hydrogen evolution. However, a significant challenge is the formation of sulfur-hydrogen bonds on MS2 (S-Hads), which will severely suppress hydrogen evolution reaction (HER). Here we report Cu nanodots (NDs)-decorated Ni3S2 nanotubes (NTs) supported on carbon fibers (CFs) (Cu NDs/Ni3S2 NTs-CFs) as efficient electrocatalysts for HER in alkaline media. The electronic interactions between Cu and Ni3S2 result in Cu NDs that are positively charged and can promote water adsorption and activation. Meanwhile, Ni3S2 NTs are negatively charged and can weaken S-Hads bonds formed on catalyst surfaces. Therefore, the Cu/Ni3S2 hybrids can optimize H adsorption and desorption on electrocatalysts and can promote both Volmer and Heyrovsky steps of HER. The strong interactions between Cu and Ni3S2 cause the Cu NDs/Ni3S2 NTs-CFs electrocatalysts to exhibit the outstanding HER catalytic performance with low onset potential, high catalytic activity, and excellent stability.

2.
J Am Chem Soc ; 140(15): 5118-5126, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29609454

RESUMO

The search for high active, stable, and cost-efficient hydrogen evolution reaction (HER) electrocatalysts for water electrolysis has attracted great interest. The coordinated water molecules in the hydronium ions will obviously reduce the positive charge density of H+ and hamper the ability of H+ to receive electrons from the cathode, leading to large overpotential of HER on nonprecious metal catalysts. Here we realize Pt-like hydrogen evolution electrocatalysis on polyaniline (PANI) nanodots (NDs)-decorated CoP hybrid nanowires (HNWs) supported on carbon fibers (CFs) (PANI/CoP HNWs-CFs) as PANI can effectively capture H+ from hydronium ions to form protonated amine groups that have higher positive charge density than those of hydronium ions and can be electro-reduced easily. The PANI/CoP HNWs-CFs as low-cost electrocatalysts show excellent catalytic performance toward HER in acidic solution, such as super high catalytic activity, small Tafel slope, and superior stability.

3.
Angew Chem Int Ed Engl ; 57(10): 2672-2676, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29418055

RESUMO

Iron-substituted CoOOH porous nanosheet arrays grown on carbon fiber cloth (denoted as Fex Co1-x OOH PNSAs/CFC, 0≤x≤0.33) with 3D hierarchical structures are synthesized by in situ anodic oxidation of α-Co(OH)2 NSAs/CFC in solution of 0.01 m (NH4 )2 Fe(SO4 )2 . X-ray absorption fine spectra (XAFS) demonstrate that CoO6 octahedral structure in CoOOH can be partially substituted by FeO6 octahedrons during the transformation from α-Co(OH)2 to Fex Co1-x OOH, and this is confirmed for the first time in this study. The content of Fe in Fex Co1-x OOH, no more than 1/3 of Co, can be controlled by adjusting the in situ anodic oxidation time. Fe0.33 Co0.67 OOH PNSAs/CFC shows superior OER electrocatalytic performance, with a low overpotential of 266 mV at 10 mA cm-2 , small Tafel slope of 30 mV dec-1 , and high durability.

4.
Angew Chem Int Ed Engl ; 56(11): 2960-2964, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28140498

RESUMO

TiO2 Co nanotubes decorated with nanodots (TiO2 NDs/Co NSNTs-CFs) are reported as high-performance earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution. TiO2 NDs/Co NSNTs can promote water adsorption and optimize the free energy of hydrogen adsorption. More importantly, the absorbed water can be easily activated in the presence of the TiO2 -Co hybrid structure. These advantages will significantly promote HER. TiO2 NDs/Co NSNTs-CFs as electrocatalysts show a high catalytic performance towards HER in alkaline solution. This study will open up a new avenue for designing and fabricating low-cost high-performance HER catalysts.

5.
Angew Chem Int Ed Engl ; 56(28): 8120-8124, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28523796

RESUMO

Constructing inorganic-organic hybrids with superior properties in terms of water adsorption and activation will lead to catalysts with significantly enhanced electrocatalytic activity in the hydrogen evolution reaction (HER) in environmentally benign neutral media. Herein, we report SiO2 -polypyrrole (PPy) hybrid nanotubes supported on carbon fibers (CFs) (SiO2 /PPy NTs-CFs) as inexpensive and high-performance electrocatalysts for the HER in neutral media. Because of the strong electronic interactions between SiO2 and PPy, the SiO2 uniquely serves as the centers for water adsorption and activation, and accordingly promotes the HER. The metal-free SiO2 /PPy NTs-CFs displayed high catalytic activity in the HER in neutral media, such as a low onset potential and small Tafel slope, as well as excellent long-term durability.

6.
Angew Chem Int Ed Engl ; 55(11): 3694-8, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26879125

RESUMO

Herein, we developed FeOOH/Co/FeOOH hybrid nanotube arrays (HNTAs) supported on Ni foams for oxygen evolution reaction (OER). The inner Co metal cores serve as highly conductive layers to provide reliable electronic transmission, and can overcome the poor electrical conductivity of FeOOH efficiently. DFT calculations demonstrate the strong electronic interactions between Co and FeOOH in the FeOOH/Co/FeOOH HNTAs, and the hybrid structure can lower the energy barriers of intermediates and thus promote the catalytic reactions. The FeOOH/Co/FeOOH HNTAs exhibit high electrocatalytic performance for OER, such as low onset potential, small Tafel slope, and excellent long-term durability, and they are promising electrocatalysts for OER in alkaline solution.

8.
Angew Chem Int Ed Engl ; 54(12): 3669-73, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25631986

RESUMO

PdCo nanotube arrays (NTAs) supported on carbon fiber cloth (CFC) (PdCo NTAs/CFC) are presented as high-performance flexible electrocatalysts for ethanol oxidation. The fabricated flexible PdCo NTAs/CFC exhibits significantly improved electrocatalytic activity and durability compared with Pd NTAs/CFC and commercial Pd/C catalysts. Most importantly, the PdCo NTAs/CFC shows excellent flexibility and the high electrocatalytic performance remains almost constant under the different distorted states, such as normal, bending, and twisting states. This work shows the first example of Pd-based alloy NTAs supported on CFC as high-performance flexible electrocatalysts for ethanol oxidation.

14.
J Am Chem Soc ; 135(29): 10703-9, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23837995

RESUMO

Low cost, high activity, and long-term durability are the main requirements for commercializing fuel cell electrocatalysts. Despite tremendous efforts, developing non-Pt anode electrocatalysts with high activity and long-term durability at low cost remains a significant technical challenge. Here we report a new type of hybrid Pd/PANI/Pd sandwich-structured nanotube array (SNTA) to exploit shape effects and synergistic effects of Pd-PANI composites for the oxidation of small organic molecules for direct alcohol fuel cells. These synthesized Pd/PANI/Pd SNTAs exhibit significantly improved electrocatalytic activity and durability compared with Pd NTAs and commercial Pd/C catalysts. The unique SNTAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Besides the merits of nanotube arrays, the improved electrocatalytic activity and durability are especially attributed to the special Pd/PANI/Pd sandwich-like nanostructures, which results in electron delocalization between Pd d orbitals and PANI π-conjugated ligands and in electron transfer from Pd to PANI.

15.
Nano Lett ; 12(7): 3803-7, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22730918

RESUMO

We demonstrate the design and fabrication of novel nanoarchitectures of MnO(2)/Mn/MnO(2) sandwich-like nanotube arrays for supercapacitors. The crystalline metal Mn layers in the MnO(2)/Mn/MnO(2) sandwich-like nanotubes uniquely serve as highly conductive cores to support the redox active two-double MnO(2) shells with a highly electrolytic accessible surface area and provide reliable electrical connections to MnO(2) shells. The maximum specific capacitances of 937 F/g at a scan rate of 5 mV/s by cyclic voltammetry (CV) and 955 F/g at a current density of 1.5 A/g by chronopotentiometry were achieved for the MnO(2)/Mn/MnO(2) sandwich-like nanotube arrays in solution of 1.0 M Na(2)SO(4). The hybrid MnO(2)/Mn/MnO(2) sandwich-like nanotube arrays exhibited an excellent rate capability with a high specific energy of 45 Wh/kg and specific power of 23 kW/kg and excellent long-term cycling stability (less 5% loss of the maximum specific capacitance after 3000 cycles). The high specific capacitance and charge-discharge rates offered by such MnO(2)/Mn/MnO(2) sandwich-like nanotube arrays make them promising candidates for supercapacitor electrodes, combining high-energy densities with high levels of power delivery.

16.
J Am Chem Soc ; 134(13): 5730-3, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22404702

RESUMO

Porous Pt-Ni-P composite nanotube arrays (NTAs) on a conductive substrate in good solid contact are successfully synthesized via template-assisted electrodeposition and show high electrochemical activity and long-term stability for methanol electrooxidation. Hollow nanotubular structures, porous nanostructures, and synergistic electronic effects of various elements contribute to the high electrocatalytic performance of porous Pt-Ni-P composite NTA electrocatalysts.

17.
Chemistry ; 18(27): 8386-91, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22639332

RESUMO

Bimetallic core-shell nanostructures are emerging as more important materials than monometallic nanostructures, and have much more interesting potential applications in various fields, including catalysis and electronics. In this work, we demonstrate the facile synthesis of core-shell nanotube array catalysts consisting of Pt thin layers as the shells and Ni nanotubes as the cores. The porous Ni@Pt core-shell nanotube arrays were fabricated by ZnO nanorod-array template-assisted electrodeposition, and they represent a new class of nanostructures with a high electrochemically active surface area of 50.08 m(2) (g Pt)(-1), which is close to the value of 59.44 m(2) (g Pt)(-1) for commercial Pt/C catalysts. The porous Ni@Pt core-shell nanotube arrays also show markedly enhanced electrocatalytic activity and stability for methanol oxidation compared with the commercial Pt/C catalysts. The attractive performances exhibited by these prepared porous Ni@Pt core-shell nanotube arrays make them promising candidates as future high-performance catalysts for methanol electrooxidation. The facile method described herein is suitable for large-scale, low-cost production, and significantly lowers the Pt loading, and thus, the cost of the catalysts.


Assuntos
Metanol/química , Nanotubos/química , Níquel/química , Platina/química , Catálise , Eletroquímica , Oxirredução
18.
Chemphyschem ; 12(1): 166-71, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21226198

RESUMO

Herein Ce(1-x)Fe(x)O(2-δ) nanocomposites were investigated for dilute magnetic semiconductor (DMS) properties. Ce(1-x)Fe(x)O(2-δ) nanospheres and porous nanostructures with high surface areas have been successfully prepared by electrochemical deposition at room temperature and atmospheric pressure. The structures and morphologies of Ce(1-x)Fe(x)O(2-δ) deposits were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N(2) adsorption-desorption techniques. The magnetic properties of the prepared Ce(1-x)Fe(x)O(2-δ) nanospheres and porous nanostructures were studied, and they showed room-temperature ferromagnetism and giant magnetic moments. In addition, the effects of morphologies and compositions on the magnetic properties of Ce(1-x)Fe(x)O(2-δ) deposits were studied.


Assuntos
Cério/química , Ferro/química , Magnetismo , Eletroquímica , Nanoestruturas/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
19.
Photochem Photobiol Sci ; 10(11): 1760-5, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21879139

RESUMO

The first complex picosecond filament, namely a filament of terbium(III) p-hydroxybenzoate, is observed. The filament is the only example of Ln(III) ion two-photon absorption in a complex. A transparent, colorless and mechanically robust thin film, as well as a supramolecular gel, of this complex are prepared in a facile manner and exhibit strong luminescence. The thin film is characterized in detail by XRD, SEM, UV-vis, luminescence spectroscopy and lifetime.


Assuntos
Complexos de Coordenação/química , Géis/química , Térbio/química , Complexos de Coordenação/síntese química , Parabenos/química , Teoria Quântica , Espectrometria de Fluorescência , Fatores de Tempo , Difração de Raios X
20.
Inorg Chem ; 50(3): 757-63, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21182331

RESUMO

Large-scale and highly oriented single-crystalline hexagonal Cu(2)O nanotube arrays have been successfully synthesized using a two-step solution approach, which involves the electrodeposition of oriented Cu(2)O nanorods and a subsequent dissolution technique along the c axis to form a tubular structure. Herein, NH(4)Cl was found to be an effectual additive, and it can successfully realize the dissolution process of Cu(2)O from nanorods to nanotubes. The dissolution mechanism of Cu(2)O from nanorods to nanotubes was illustrated in detail. These prepared Cu(2)O nanotube arrays were characterized by SEM, EDS, XRD, XPS, and TEM. The photoluminescence (PL) spectrum of Cu(2)O nanotube arrays was also measured, and it shows there is a greater fraction of copper or oxygen vacancies in these prepared Cu(2)O nanotubes. Finally, the applications of Cu(2)O nanotube arrays for gas sensors were investigated in this paper.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa