Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 10: 958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551772

RESUMO

The negative side effects of opioid-based narcotics underscore the search for alternative non-opioid bioactive compounds that act on the peripheral nervous system to avoid central nervous system-mediated side effects. The transient receptor potential V1 ion channel (TRPV1) is a peripheral pain generator activated and sensitized by heat, capsaicin, and a variety of endogenous ligands. TRPV1 contributes to peripheral sensitization and hyperalgesia, in part, via triggering the release of proinflammatory peptides, such as calcitonin gene-related peptide (CGRP), both locally and at the dorsal horn of the spinal cord. Ultrapotent exogenous TRPV1 agonists, such as resiniferatoxin identified in the latex of the exotic Euphorbia resinifera, trigger hyperalgesia followed by long lasting, peripheral analgesia. The present study reports on the analgesic properties of Euphorbia bicolor, a relative of E. resinifera, native to the Southern United States. The study hypothesized that E. bicolor latex extract induces long-lasting, non-opioid peripheral analgesia in a rat model of inflammatory pain. Both inflamed and non-inflamed adult male and female rats were injected with the methanolic extract of E. bicolor latex into the hindpaw and changes in pain behaviors were reassessed at various time points up to 4 weeks. Primary sensory neuron cultures also were treated with the latex extract or vehicle for 15 min followed by stimulation with the TRPV1 agonist capsaicin. Results showed that E. bicolor latex extract evoked significant pain behaviors in both male and female rats at 20 min post-injection and lasting around 1-2 h. At 6 h post-injection, analgesia was observed in male rats that lasted up to 4 weeks, whereas in females the onset of analgesia was delayed to 72 h post-injection. In sensory neurons, latex extract significantly reduced capsaicin-evoked CGRP release. Blocking TRPV1, but not opioid receptors, attenuated the onset of analgesia and capsaicin-induced CGRP release. Latex was analyzed by mass spectrometry and eleven candidate compounds were identified and reported here. These findings indicate that phytochemicals in the E. bicolor latex induce hyperalgesia followed by peripheral, non-opioid analgesia in both male and female rats, which occurs in part via TRPV1 and may provide novel, non-opioid peripheral analgesics that warrant further examination.

2.
Neuroscience ; 384: 87-100, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800719

RESUMO

Many persistent pain conditions occur predominantly in women making pain a major women's health issue. One theory for the prevalence in females is hormone modulation of pain mechanisms. The peripheral release of the neurotransmitter serotonin (5HT) has been implicated in various sexually dimorphic pain conditions; yet no studies have examined the effect of ovarian hormones on peripheral 5HT-evoked pain behaviors. We hypothesized that peripheral 5HT evokes greater pain behaviors in female rodents during estrus and/or proestrus, stages of the estrous cycle where ovarian hormones are greatly fluctuating. Female Sprague-Dawley rats (250-350 g) from each stage of the estrous cycle, ovariectomized females, and intact males received an intraplantar hindpaw injection of 5HT (2 µg/100 µL) or saline (n = 6 per group) and thermal hyperalgesia, mechanical allodynia, or edema was measured at 0, 10, 20 and 30 min post-injection. A separate group of rats received an ipsilateral injection of the selective 5HT2A antagonist, M100907, 15 min prior to 5HT injection. We report that females in proestrus and estrus exhibited significantly greater and/or longer lasting pain behaviors compared to males, females in diestrus, and ovariectomized females. There were no significant sex differences or estrous cycle effects on 5HT-evoked edema or 5HT content in inflamed hindpaws. Local pretreatment with the 5HT2A receptor antagonist blocked 5HT-evoked thermal hyperalgesia and edema. These data provide evidence of a modulatory role of hormones on peripheral 5HT-evoked pain occurring via the 5HT2A receptor.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ciclo Estral/fisiologia , Hiperalgesia/fisiopatologia , Dor/induzido quimicamente , Serotonina/farmacologia , Caracteres Sexuais , Animais , Comportamento Animal/fisiologia , Feminino , Masculino , Ovariectomia , Dor/fisiopatologia , Medição da Dor , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa