RESUMO
Nonlinear chiral photonics explores the nonlinear response of chiral structures, and it offers a pathway to novel optical functionalities not accessible through linear or achiral systems. Here we present the first application of nanostructured van der Waals materials to nonlinear chiral photonics. We demonstrate the 3 orders of magnitude enhancement of the third-harmonic generation from hBN metasurfaces driven by quasi-bound states in the continuum and accompanied by strong nonlinear circular dichroism at the resonances. This novel platform for chiral metaphotonics can be employed for achieving large circular dichroism combined with high-efficiency harmonic generation in a broad frequency range.
RESUMO
Meta-atoms are the building blocks of metamaterials, which are employed to control both generation and propagation of light as well as provide novel functionalities of localization and directivity of electromagnetic radiation. In many cases, simple dielectric or metallic resonators are employed as meta-atoms to create different types of electromagnetic metamaterials. Here, we fabricate and study supercrystal meta-atoms composed of coupled perovskite quantum dots. We reveal that these multiscale structures exhibit specific emission properties, such as spectrum splitting and polaritonic effects. We believe that such multiscale supercrystal meta-atoms will provide novel functionalities in the design of many novel types of active metamaterials and metasurfaces.
RESUMO
Future technologies underpinning multifunctional physical and chemical systems and compact biological sensors will rely on densely packed transformative and tunable circuitry employing nanophotonics. For many years, plasmonics was considered as the only available platform for subwavelength optics, but the recently emerged field of resonant metaphotonics may provide a versatile practical platform for nanoscale science by employing resonances in high-index dielectric nanoparticles and metasurfaces. Here, we discuss the recently emerged field of metaphotonics and describe its connection to material science and chemistry. For tunabilty, metaphotonics employs a variety of the recently highlighted materials such as polymers, perovskites, transition metal dichalcogenides, and phase change materials. This allows to achieve diverse functionalities of metasystems and metasurfaces for efficient spatial and temporal control of light by employing multipolar resonances and the physics of bound states in the continuum. We anticipate expanding applications of these concepts in nanolasers, tunable metadevices, metachemistry, as well as a design of a new generation of chemical and biological ultracompact sensing devices.
Assuntos
Nanopartículas , Nanotecnologia , Ciência dos Materiais , Óptica e Fotônica , PolímerosRESUMO
Multiphoton processes of absorption photoluminescence have enabled a wide range of applications including three-dimensional microfabrication, data storage, and biological imaging. While the applications of two-photon and three-photon absorption and luminescence have matured considerably, higher-order photoluminescence processes remain more challenging to study due to their lower efficiency, particularly in subwavelength systems. Here, we report the observation of five-photon luminescence from a single subwavelength nanoantenna at room temperature enabled by the Mie resonances. We excite an AlGaAs resonator at around 3.6 µm and observe photoluminescence at around 740 nm. We show that the interplay of the Mie multipolar modes at the subwavelength scale can enhance the efficiency of the five-photon luminescence by at least 4 orders of magnitude, being limited only by sensitivity of our detector. Our work paves the way toward applications of higher-order multiphoton processes at the subwavelength scales enabled by the physics of Mie resonances.
Assuntos
Luminescência , FótonsRESUMO
Multiphoton absorption and luminescence are fundamentally important nonlinear processes for utilizing efficient light-matter interaction. Resonant enhancement of nonlinear processes has been demonstrated for many nanostructures; however, it is believed that all higher-order processes are always much weaker than their corresponding linear processes. Here, we study multiphoton luminescence from structured surfaces and, combining multiple advantages of perovskites with the concept of metasurfaces, we demonstrate that the efficiency of nonlinear multiphoton processes can become comparable to the efficiency of the linear process. We reveal that the perovskite metasurface can enhance substantially two-photon stimulated emission with the threshold being comparable with that of the one-photon process. Our modeling of free-carrier dynamics and exciton recombination upon nonlinear photoexcitation uncovers that this effect can be attributed to the local field enhancement in structured media, a substantial increase of the mode overlap, and the selection rules of two-photon absorption in perovskites.
RESUMO
We study active dielectric metasurfaces composed of two-dimensional arrays of split-nanodisk resonators fabricated in InGaAsP membranes with embedded quantum wells. Depending on the geometric parameters, such split-nanodisk resonators can operate in the optical anapole regime originating from an overlap of the electric dipole and toroidal dipole Mie-resonant optical modes, thus supporting strongly localized fields and high-Q resonances. We demonstrate room-temperature lasing from the anapole lattices of engineered active metasurfaces with low threshold and high coherence.
RESUMO
Resonant dielectric structures have emerged recently as a new platform for subwavelength nonplasmonic photonics. It was suggested and demonstrated that magnetic and electric Mie resonances can enhance substantially many effects at the nanoscale including spontaneous Raman scattering. Here, we demonstrate stimulated Raman scattering (SRS) for isolated crystalline silicon (c-Si) nanoparticles and observe experimentally a transition from spontaneous to stimulated scattering manifested in a nonlinear growth of the signal intensity above a certain pump threshold. At the Mie resonance, the light gets confined into a low volume of the resonant mode with enhanced electromagnetic fields inside the c-Si nanoparticle due to its high refractive index, which leads to an overall strong SRS signal at low pump intensities. Our finding paves the way for the development of efficient Raman nanolasers for multifunctional photonic metadevices.
RESUMO
Nanophotonics based on resonant nanostructures and metasurfaces made of halide perovskites have become a prospective direction for efficient light manipulation at the subwavelength scale in advanced photonic designs. One of the main challenges in this field is the lack of large-scale low-cost technique for subwavelength perovskite structures fabrication preserving highly efficient luminescence. Here, unique properties of halide perovskites addressed to their extremely low thermal conductivity (lower than that of silica glass) and high defect tolerance to apply projection femtosecond laser lithography for nanofabrication with precise spatial control in all three dimensions preserving the material luminescence efficiency are employed. Namely, with CH3 NH3 PbI3 perovskite highly ordered nanoholes and nanostripes of width as small as 250 nm, metasurfaces with periods less than 400 nm, and nanowire lasers as thin as 500 nm, corresponding to the state-of-the-art in multistage expensive lithographical methods are created. Remarkable performance of the developed approach allows to demonstrate a number of advanced optical applications, including morphology-controlled photoluminescence yield, structural coloring, optical- information encryption, and lasing.
RESUMO
The rational combination of plasmonic and all-dielectric concepts within hybrid nanomaterials provides a promising route toward devices with ultimate performance and extended modalities. Spectral matching of plasmonic and Mie-type resonances for such nanostructures can only be achieved for their dissimilar characteristic sizes, thus making the resulting hybrid nanostructure geometry complex for practical realization and large-scale replication. Here, we produced amorphous TiO2 nanospheres decorated and doped with Au nanoclusters via single-step nanosecond-laser irradiation of commercially available TiO2 nanopowders dispersed in aqueous HAuCl4. Fabricated hybrids demonstrate remarkable light-absorbing properties (averaged value ≈96%) in the visible and near-IR spectral range mediated by bandgap reduction of the laser-processed amorphous TiO2 as well as plasmon resonances of the decorating Au nanoclusters. The findings are supported by optical spectroscopy, electron energy loss spectroscopy, transmission electron microscopy, and electromagnetic modeling. Light-absorbing and plasmonic properties of the produced hybrids were implemented to demonstrate catalytically passive SERS biosensor for identification of analytes at trace concentrations and solar steam generator that permitted to increase water evaporation rate by 2.5 times compared with that of pure water under identical 1 sun irradiation conditions.
RESUMO
Subwavelength particles supporting Mie resonances underpin a strategy in nanophotonics for efficient control and manipulation of light by employing both an electric and a magnetic optically induced multipolar resonant response. Here, we demonstrate that monolithic dielectric nanoparticles made of CsPbBr3 halide perovskites can exhibit both efficient Mie-resonant lasing and structural coloring in the visible and near-IR frequency ranges. We employ a simple chemical synthesis with nearly epitaxial quality for fabricating subwavelength cubes with high optical gain and demonstrate single-mode lasing governed by the Mie resonances from nanocubes as small as 310 nm by the side length. These active nanoantennas represent the most compact room-temperature nonplasmonic nanolasers demonstrated until now.
RESUMO
Halide perovskites are a family of semiconductor materials demonstrating prospective properties for optical cooling owing to efficient luminescence at room temperature and strong electron-phonon interaction. Moreover, perovskite based nanophotonic designs would allow for efficient optical cooling at the nanoscale. Here, we propose a novel strategy for the enhancement of optical cooling at the nanoscale based on optical resonance engineering in halide perovskite nanoparticles. Namely, the photoluminescence up-conversion efficiency in a nanoparticle is optimized via excitation of Mie-resonances both at emission and absorption wavelengths. The optimized theoretical photo-induced temperature decrease achieved for a hybrid halide perovskite (CH3NH3PbI3) 530 nm nanoparticle on a glass substrate is more than 100 K under CW illumination at wavelength 980 nm and moderate intensities (â¼7 × 106 W cm-2). The optimized regime originates from simultaneous excitation of a magnetic quadrupole and a magnetic octupole at pump and emission wavelengths, respectively. The combination of a thermally sensitive photoluminescence signal and simplicity in the fabrication of a halide perovskite nanocavity will pave the way for implementation of nanoscale optical coolers for advanced applications.