Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33834183

RESUMO

Minichromosome maintenance complex component 7 (MCM7) belongs to the minichromosome maintenance family that is important for the initiation of eukaryotic DNA replication. Overexpression of the MCM7 protein is relative to cellular proliferation and responsible for aggressive malignancy in various cancers. Mechanistically, inhibition of MCM7 significantly reduces the cellular proliferation associated with cancer. To date, no effective small molecular candidate has been identified that can block the progression of cancer induced by the MCM7 protein. Therefore, the study has been designed to identify small molecular-like natural drug candidates against aggressive malignancy associated with various cancers by targeting MCM7 protein. To identify potential compounds against the targeted protein a comprehensive in silico drug design including molecular docking, ADME (Absorption, Distribution, Metabolism and Excretion), toxicity, and molecular dynamics (MD) simulation approaches has been applied. Seventy phytochemicals isolated from the neem tree (Azadiractha indica) were retrieved and screened against MCM7 protein by using the molecular docking simulation method, where the top four compounds have been chosen for further evaluation based on their binding affinities. Analysis of ADME and toxicity properties reveals the efficacy and safety of the selected four compounds. To validate the stability of the protein-ligand complex structure MD simulations approach has also been performed to the protein-ligand complex structure, which confirmed the stability of the selected three compounds including CAS ID:105377-74-0, CID:12308716 and CID:10505484 to the binding site of the protein. In the study, a comprehensive data screening process has performed based on the docking, ADMET properties, and MD simulation approaches, which found a good value of the selected four compounds against the targeted MCM7 protein and indicates as a promising and effective human anticancer agent.


Assuntos
Azadirachta/química , Informática/métodos , Componente 7 do Complexo de Manutenção de Minicromossomo/antagonistas & inibidores , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Algoritmos , Sítios de Ligação , Detecção Precoce de Câncer , Humanos , Ligantes , Componente 7 do Complexo de Manutenção de Minicromossomo/química , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular/métodos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Ligação Proteica , Domínios Proteicos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa