Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Cytotherapy ; 26(11): 1362-1373, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39001769

RESUMO

BACKGROUND AIMS: Ex vivo production of red blood cells (RBCs) represents a promising alternative for transfusion medicine. Several strategies have been described to generate erythroid cell lines from different sources, including embryonic, induced pluripotent, and hematopoietic stem cells. All these approaches have in common that they require elaborate differentiation cultures whereas the yield of enucleated RBCs is inefficient. METHODS: We generated a human immortalized adult erythroid progenitor cell line derived from bone marrow CD71-positive erythroid progenitor cells (immortalized bone marrow erythroid progenitor adult, or imBMEP-A) by an inducible expression system, to shorten differentiation culture necessary for terminal erythroid differentiation. It is the first erythroid cell line that is generated from direct reticulocyte progenitors and demonstrates robust hemoglobin production in the immortalized state. RESULTS: Morphologic analysis of the immortalized cells showed that the preferred cell type of the imBMEP-A line corresponds to hemoglobin-producing basophilic erythroblasts. In addition, we were able to generate a stable cell line from a single cell clone with the triple knockout of RhAG, RhDCE and KELL. After removal of doxycycline, part of the cells differentiated into normoblasts and reticulocytes within 5-7 days. CONCLUSIONS: Our results demonstrate that the imBMEP-A cell line can serve as a stable and straightforward modifiable platform for RBC engineering in the future.


Assuntos
Antígenos CD , Diferenciação Celular , Células Precursoras Eritroides , Receptores da Transferrina , Humanos , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Receptores da Transferrina/metabolismo , Antígenos CD/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Eritropoese , Linhagem Celular , Eritrócitos/citologia , Eritrócitos/metabolismo , Reticulócitos/citologia , Reticulócitos/metabolismo
2.
Horm Metab Res ; 56(4): 318-323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37890507

RESUMO

COVID-19 disease, caused by the severe acute respiratory syndrome virus 2 (SARS-CoV-2), induces a broad spectrum of clinical symptoms ranging from asymptomatic cases to fatal outcomes. About 10-35% of all COVID-19 patients, even those with mild COVID-19 symptoms, continue to show symptoms, i. e., fatigue, shortness of breath, cough, and cognitive dysfunction, after initial recovery. Previously, we and others identified red blood cell precursors as a direct target of SARS-CoV-2 and suggested that SARS-CoV-2 induces dysregulation in hemoglobin- and iron-metabolism contributing to the severe systemic course of COVID-19. Here, we put particular emphasis on differences in parameters of clinical blood gas analysis and hematological parameters of more than 20 healthy and Long-COVID patients, respectively. Long-COVID patients showed impaired oxygen binding to hemoglobin with concomitant increase in carbon monoxide binding. Hand in hand with decreased plasma iron concentration and transferrin saturation, mean corpuscular hemoglobin was elevated in Long-COVID patients compared to healthy donors suggesting a potential compensatory mechanism. Although blood pH was within the physiological range in both groups, base excess- and bicarbonate values were significantly lower in Long-COVID patients. Furthermore, Long-COVID patients displayed reduced lymphocyte levels. The clinical relevance of these findings, e. g., as a cause of chronic immunodeficiency, remains to be investigated in future studies. In conclusion, our data suggest impaired erythrocyte functionality in Long-COVID patients, leading to diminished oxygen supply. This in turn could be an explanation for the CFS, dyspnea and anemia. Further investigations are necessary to identify the underlying pathomechanisms.


Assuntos
COVID-19 , Humanos , COVID-19/complicações , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Eritrócitos , Ferro , Hemoglobinas , Oxigênio
3.
Transfus Med Hemother ; 51(4): 237-251, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135851

RESUMO

Background: MicroRNAs (miRNAs) are small, endogenous non-coding RNA molecules that inhibit gene expression through either destabilization of the target mRNA or translational repression. MiRNAs recognize target sites, most commonly found in the 3'-untranslated regions of cognate mRNAs. This review aims to provide a state-of-the-art overview of the role of miRNAs in the regulation of major blood group antigens such as ABH as well as cancer-specific glycans. Summary: Besides their known roles in the control of developmental processes, proliferation, apoptosis, and carcinogenesis, miRNAs have recently been identified to play a regulatory role during erythropoiesis and blood group antigen expression. Since only little is known about the function of the red cell membrane proteins carrying blood group antigens, it is of great interest to shed light on the regulatory mechanisms of blood group gene expression. Some carrier proteins of blood group antigens are not restricted to red blood cells and are widely expressed in other bodily fluids and tissues and quite a few play a crucial role in tumor cells, as either tumor suppressors or promoters. Key Message: All available data point at a tremendous physiological as well as pathophysiological relevance of miRNAs in context of blood group regulation. Furthermore, miRNAs are involved in the regulation of pleiotropic genetic pathways such as hematopoiesis and tumorigenesis and thus have to be studied in future research on this subject.

4.
Cancer Immunol Immunother ; 72(9): 2905-2918, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36688995

RESUMO

Chimeric antigen receptor (CAR)-engineered immune effector cells constitute a promising approach for adoptive cancer immunotherapy. Nevertheless, on-target/off-tumor toxicity and immune escape due to antigen loss represent considerable challenges. These may be overcome by adaptor CARs that are selectively triggered by bispecific molecules that crosslink the CAR with a tumor-associated surface antigen. Here, we generated NK cells carrying a first- or second-generation universal CAR (UniCAR) and redirected them to tumor cells with so-called target modules (TMs) which harbor an ErbB2 (HER2)-specific antibody domain for target cell binding and the E5B9 peptide recognized by the UniCAR. To investigate differential effects of the protein design on activity, we developed homodimeric TMs with one, two or three E5B9 peptides per monomer, and binding domains either directly linked or separated by an IgG4 Fc domain. The adaptor molecules were expressed as secreted proteins in Expi293F cells, purified from culture supernatants and their bispecific binding to UniCAR and ErbB2 was confirmed by flow cytometry. In cell killing experiments, all tested TMs redirected NK cell cytotoxicity selectively to ErbB2-positive tumor cells. Nevertheless, we found considerable differences in the extent of specific cell killing depending on TM design and CAR composition, with adaptor proteins carrying two or three E5B9 epitopes being more effective when combined with NK cells expressing the first-generation UniCAR, while the second-generation UniCAR was more active in the presence of TMs with one E5B9 sequence. These results may have important implications for the further development of optimized UniCAR and target module combinations for cancer immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Células Matadoras Naturais , Neoplasias/terapia , Imunoterapia Adotiva/métodos , Antígenos de Neoplasias , Linhagem Celular Tumoral , Receptor ErbB-2
5.
Euro Surveill ; 28(48)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38037727

RESUMO

BackgroundWest Nile virus (WNV), found in Berlin in birds since 2018 and humans since 2019, is a mosquito-borne virus that can manifest in humans as West Nile fever (WNF) or neuroinvasive disease (WNND). However, human WNV infections and associated disease are likely underdiagnosed.AimWe aimed to identify and genetically characterise WNV infections in humans and mosquitoes in Berlin.MethodsWe investigated acute WNV infection cases reported to the State Office for Health and Social Affairs Berlin in 2021 and analysed cerebrospinal fluid (CSF) samples from patients with encephalitis of unknown aetiology (n = 489) for the presence of WNV. Mosquitoes were trapped at identified potential exposure sites of cases and examined for WNV infection.ResultsWest Nile virus was isolated and sequenced from a blood donor with WNF, a symptomatic patient with WNND and a WNND case retrospectively identified from testing CSF. All cases occurred in 2021 and had no history of travel 14 days prior to symptom onset (incubation period of the disease). We detected WNV in Culex pipiens mosquitoes sampled at the exposure site of one case in 2021, and in 2022. Genome analyses revealed a monophyletic Berlin-specific virus clade in which two enzootic mosquito-associated variants can be delineated based on tree topology and presence of single nucleotide variants. Both variants have highly identical counterparts in human cases indicating local acquisition of infection.ConclusionOur study provides evidence that autochthonous WNV lineage 2 infections occurred in Berlin and the virus has established an endemic maintenance cycle.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Berlim/epidemiologia , Estudos Retrospectivos , Europa (Continente) , Alemanha/epidemiologia
6.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628668

RESUMO

In glioblastoma, non-classical human leucocyte antigen E (HLA-E) and HLA-G are frequently overexpressed. HLA-E loaded with peptides derived from HLA class I and from HLA-G contributes to inhibition of natural killer (NK) cells with expression of the inhibitory receptor CD94/NKG2A. We investigated whether NK cells expressing the activating CD94/NKG2C receptor counterpart were able to exert anti-glioma effects. NKG2C+ subsets were preferentially expanded by a feeder cell line engineered to express an artificial disulfide-stabilized trimeric HLA-E ligand (HLA-E*spG). NK cells expanded by a feeder cell line, which facilitates outgrowth of conventional NKG2A+, and fresh NK cells, were included for comparison. Expansion via the HLA-E*spG feeder cells selectively increased the fraction of NKG2C+ NK cells, which displayed a higher frequency of KIR2DL2/L3/S2 and CD16 when compared to expanded NKG2A+ NK cells. NKG2C+ NK cells exhibited increased cytotoxicity against K562 and KIR:HLA-matched and -mismatched primary glioblastoma multiforme (GBM) cells when compared to NKG2A+ NK cells and corresponding fresh NK cells. Cytotoxic responses of NKG2C+ NK cells were even more pronounced when utilizing target cells engineered with HLA-E*spG. These findings support the notion that NKG2C+ NK cells have potential therapeutic value for treating gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunoterapia Adotiva , Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Glioblastoma/metabolismo , Glioblastoma/terapia , Antígenos HLA-G/imunologia , Humanos , Fatores Imunológicos/imunologia , Fatores Imunológicos/metabolismo , Células K562 , Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia
7.
Stem Cells ; 38(10): 1348-1362, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32621650

RESUMO

The ABO blood group system is the most important factor in clinical transfusion medicine and is implicated in a number of human diseases. ABO antigens are not confined to red blood cells (RBCs) and are widely expressed in a variety of human cells and tissues. To date, many alleles with variant ABO expression have been identified and in many cases traced to one of the >250 reported genetic variations in the respective glycosyltransferase. The role of microRNAs (miRNAs) in the regulation of blood group antigens during erythropoiesis has not been addressed, however. Here, we show that miR-331-3p and miR-1908-5p directly target the mRNA of glycosyltransferases A and B. Expression levels of miR-331-3p and miR-1908-5p inversely correlated with levels of blood group A antigen. In addition, we found that overexpression of these miRNAs in hematopoietic stem cells led to a significantly reduced number of blood group A antigens per RBC. Simultaneous targeting of the transcription factor (TF) SP1 by miR-331-3p further enhanced these effects. The targeting rendered SP1 incapable of binding to the ABO gene promoter, causing further downregulation of blood group A antigen expression by up to 70%. Taken together, expression changes in these miRNAs may account for rare cases of weak A/B phenotypes that genetic variations in the glycosyltransferase coding region cannot explain. These results also suggest an explanation for the disappearance of ABH antigens during carcinogenesis and point to new therapeutic targets in ABO mismatched organ transplantation.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/metabolismo , Sequência de Bases , Antígenos de Grupos Sanguíneos/metabolismo , Regulação para Baixo/genética , Genótipo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , MicroRNAs/genética , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo
8.
Transfus Med Hemother ; 48(3): 137-147, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34177417

RESUMO

BACKGROUND: Convalescent plasma is one of the treatment options for COVID-19 which is currently being investigated in many clinical trials. Understanding of donor and product characteristics is important for optimization of convalescent plasma. METHODS: Patients who had recovered from CO-VID-19 were recruited as donors for COVID-19 convalescent plasma (CCP) for a randomized clinical trial of CCP for treatment of severe COVID-19 (CAPSID Trial). Titers of neutralizing antibodies were measured by a plaque-reduction neutralization test (PRNT). Correlation of antibody titers with host factors and evolution of neutralizing antibody titers over time in repeat donors were analysed. RESULTS: A series of 144 donors (41% females, 59% males; median age 40 years) underwent 319 plasmapheresis procedures providing a median collection volume of 850 mL and a mean number of 2.7 therapeutic units per plasmapheresis. The majority of donors had a mild or moderate course of COVID-19. The titers of neutralizing antibodies varied greatly between CCP donors (from <1:20 to >1:640). Donor factors (gender, age, ABO type, body weight) did not correlate significantly with the titer of neutralizing antibodies. We observed a significant positive correlation of neutralization titers with the number of reported COVID-19 symptoms and with the time from SARS-CoV-2 diagnosis to plasmapheresis. Neutralizing antibody levels were stable or increased over time in 58% of repeat CCP donors. Mean titers of neutralizing antibodies of first donation and last donation of repeat CCP donors did not differ significantly (1:86 at first compared to 1:87 at the last donation). There was a significant correlation of neutralizing antibodies measured by PRNT and anti-SARS-CoV-2 IgG and IgA antibodies which were measured by ELISA. CCP donations with an anti-SARS-CoV-2 IgG antibody content above the 25th percentile were substantially enriched for CCP donations with higher neutralizing antibody levels. CONCLUSION: We demonstrate the feasibility of collection of a large number of CCP products under a harmonized protocol for a randomized clinical trial. Titers of neutralizing antibodies were stable or increased over time in a subgroup of repeat donors. A history of higher number of COVID-19 symptoms and higher levels of anti-SARS-CoV-2 IgG and IgA antibodies in immunoassays can preselect donations with higher neutralizing capacity.

9.
Eur J Immunol ; 48(8): 1400-1411, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738081

RESUMO

Antigen-specific T cells isolated from healthy individuals (HIs) have shown great therapeutic potential upon adoptive transfer for the treatment of viremia in immunosuppressed patients. The lack of comprehensive data on the prevalence and characteristics of leukemia-associated antigen (LAA)-specific T cells in HIs still limits such an approach for tumor therapy. Therefore, we have investigated T-cell responses against prominent candidates comprising Wilms' tumor protein 1 (WT1), preferentially expressed antigen in melanoma (PRAME), Survivin, NY-ESO, and p53 by screening PBMCs from HIs using intracellular IFN-γ staining following provocation with LAA peptide mixes. Here, we found predominantly poly-functional effector/effector memory CCR7- /CD45RA+/- /CD8+ LAA peptide-specific T cells with varying CD95 expression in 34 of 100 tested HIs, whereas CD4+ T cells responses were restricted to 5. Most frequent LAA peptide-specific T cell responses were directed against WT1 and PRAME peptides with a prevalence of 20 and 17%, respectively, showing the highest magnitude (0.16% ± 0.22% (mean ± SD)) for PRAME peptides. Cytotoxicity of PRAME peptide-specific T cells was demonstrated by specific killing of PRAME peptide-pulsed T2 cells. Furthermore, the proliferative capacity of PRAME peptide-specific T cells was confined to HIs responsive toward PRAME peptide challenge corroborating the accuracy of the screening results. In conclusion, we identified PRAME as a promising target antigen for adoptive leukemia therapy.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva , Leucemia/terapia , Antígenos de Neoplasias/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Linhagem Celular , Citotoxicidade Imunológica/imunologia , Feminino , Humanos , Memória Imunológica/imunologia , Interferon gama/imunologia , Leucemia/imunologia , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Survivina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas WT1/imunologia
10.
RNA Biol ; 16(10): 1339-1345, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251124

RESUMO

Molecular risk stratification of colorectal cancer can improve patient outcome. A panel of lncRNAs (H19, HOTTIP, HULC and MALAT1) derived from serum exosomes of patients with non-metastatic CRC and healthy donors was analyzed. Exosomes from healthy donors carried significantly more H19, HULC and HOTTIP transcripts in comparison to CRC patients. Correlation analysis between lncRNAs and clinical data revealed a statistical significance between low levels of exosomal HOTTIP and poor overall survival. This was confirmed by multivariate analysis that HOTTIP is an independent prognostic marker for overall survival (HR: 4.5, CI: 1.69-11.98, p = 0.0027). Here, HOTTIP poses to be a valid biomarker for patients with a CRC to predict post-surgical survival time.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , RNA Longo não Codificante/genética , Estudos de Casos e Controles , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Exossomos/metabolismo , Exossomos/ultraestrutura , Perfilação da Expressão Gênica , Humanos , Biópsia Líquida , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC
11.
Cancer Immunol Immunother ; 67(1): 25-38, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28879551

RESUMO

BACKGROUND: The NK-92/5.28.z cell line (also referred to as HER2.taNK) represents a stable, lentiviral-transduced clone of ErbB2 (HER2)-specific, second-generation CAR-expressing derivative of clinically applicable NK-92 cells. This study addresses manufacturing-related issues and aimed to develop a GMP-compliant protocol for the generation of NK-92/5.28.z therapeutic doses starting from a well-characterized GMP-compliant master cell bank. MATERIALS AND METHODS: Commercially available GMP-grade culture media and supplements (fresh frozen plasma, platelet lysate) were evaluated for their ability to support expansion of NK-92/5.28.z. Irradiation sensitivity and cytokine release were also investigated. RESULTS: NK-92/5.28.z cells can be grown to clinically applicable cell doses of 5 × 108 cells/L in a 5-day batch culture without loss of viability and potency. X-Vivo 10 containing recombinant transferrin supplemented with 5% FFP and 500 IU/mL IL-2 in VueLife 750-C1 bags showed the best results. Platelet lysate was less suited to support NK-92/5.28.z proliferation. Irradiation with 10 Gy completely abrogated NK-92/5.28.z proliferation and preserved viability and potency for at least 24 h. NK-92/5.28.z showed higher baseline cytokine release compared to NK-92, which was significantly increased upon encountering ErbB2(+) targets [GZMB (twofold), IFN-γ (fourfold), IL-8 (24-fold) and IL-10 (fivefold)]. IL-6 was not released by NK cells, but was observed in some stimulated targets. Irradiation resulted in upregulation of IL-8 and downregulation of sFasL, while other cytokines were not impacted. CONCLUSION: Our concept suggests NK-92/5.28.z maintenance culture from which therapeutic doses up to 5 × 109 cells can be expanded in 10 L within 5 days. This established process is feasible to analyze NK-92/5.28.z in phase I/II trials.


Assuntos
Técnicas de Cultura de Células , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Receptor ErbB-2/metabolismo , Plaquetas/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios Clínicos como Assunto , Meios de Cultura , Citocinas/metabolismo , Citotoxicidade Imunológica , Terapia Genética , Humanos , Células Matadoras Naturais/transplante , Neoplasias/imunologia , Tolerância a Radiação
12.
Transfusion ; 58(12): 2886-2893, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30325043

RESUMO

BACKGROUND: RNA viruses are associated with a high frequency of mutations because of the missing proofreading function of polymerases, such as reverse transcriptase. Between 2007 and 2010, six blood donations with false-negative nucleic acid technology (NAT) results were reported in Germany. Therefore, NAT screening in two viral genome regions was introduced by our blood donation service in 2010 on a voluntary basis and became mandatory in Germany since the beginning of 2015. STUDY DESIGN AND METHODS: Blood donor screening was done using, in parallel, the German Red Cross (GRC) HIV-1 CE long terminate repeats (LTR) PCR kit and the GRC HIV-1 gag CE PCR kit. In total, 7 million blood donations were screened during the study period from 2010 to 2014 with the GRC dual-target human immunodeficiency virus 1 (HIV-1) NAT system. Additionally, three suspicious specimens were analyzed by four monotargeted NAT assays and by five dual-target NAT assays. RESULTS: Three of 7 million donations tested negative using the 5'LTR-polymerase chain reaction, but they were positive if amplification was performed in the gag region. HIV antibodies were detected in all three donations. Nucleic acid sequence analysis identified a deletion of 22 bases within the 5'LTR probe binding region. Three different ltr-based monotargeted assays missed two donations, except for a low-reactive result obtained by one of the assays. In total, the detection rates for HIV-1-positive donations were 37.5% (3/8) for monotargeted assays and 100% (10/10) for dual-target assays. CONCLUSION: The current data demonstrate that dual-target NAT systems reduce the risk of false-negative HIV-1 NAT screening results.


Assuntos
Doadores de Sangue , Repetição Terminal Longa de HIV , HIV-1 , RNA Viral , Kit de Reagentes para Diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Segurança do Sangue , Seleção do Doador , Feminino , Alemanha , HIV-1/genética , HIV-1/metabolismo , Humanos , Masculino , RNA Viral/sangue , RNA Viral/genética , Cruz Vermelha , Estudos Retrospectivos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/sangue , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
13.
Molecules ; 23(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857542

RESUMO

Abnormally O-glycosylated MUC1 tandem repeat glycopeptide epitopes expressed by multiple types of cancer have long been attractive targets for therapy in the race against genetic mutations of tumor cells. Glycopeptide signature-guided therapy might be a more promising avenue than mutation signature-guided therapy. Three O-glycosylated peptide motifs, PDTR, GSTA, and GVTS, exist in a tandem repeat HGVTSAPDTRPAPGSTAPPA, containing five O-glycosylation sites. The exact peptide and sugar residues involved in antibody binding are poorly defined. Co-crystal structures of glycopeptides and respective monoclonal antibodies are very few. Here we review 3 groups of monoclonal antibodies: antibodies which only bind to peptide portion, antibodies which only bind to sugar portion, and antibodies which bind to both peptide and sugar portions. The antigenicity of peptide and sugar portions of glyco-MUC1 tandem repeat were analyzed according to available biochemical and structural data, especially the GSTA and GVTS motifs independent from the most studied PDTR. Tn is focused as a peptide-modifying residue in vaccine design, to induce glycopeptide-binding antibodies with cross reactivity to Tn-related tumor glycans, but not glycans of healthy cells. The unique requirement for the designs of antibody in antibody-drug conjugate, bi-specific antibodies, and chimeric antigen receptors are also discussed.


Assuntos
Anticorpos/química , Anticorpos/imunologia , Epitopos/química , Epitopos/imunologia , Mucina-1/química , Mucina-1/imunologia , Neoplasias/imunologia , Sequências de Repetição em Tandem , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Anticorpos/genética , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Sítios de Ligação , Cristalografia , Glicopeptídeos/química , Glicosilação , Humanos , Modelos Moleculares , Conformação Molecular , Neoplasias/genética , Neoplasias/terapia , Ligação Proteica/imunologia
14.
Cytometry A ; 91(10): 1001-1008, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28544366

RESUMO

The advent of novel strategies to generate leukemia-associated-antigen (LAA)-specific T cells for adoptive immunotherapies creates a demand for standardized good laboratory practice (GLP)-compliant enumeration assays to provide a secure clinical environment-whether it is to identify potential donors, define therapeutic doses for transplantation, or monitor clinical success. Here, we introduce a no-wash assay based on single-platform cell enumeration and Streptamer staining to determine the Wilms' tumor antigen 1 (WT1)-specific T cell immunity in clinical samples. We analyzed the performance of the WT1-specific MHC Streptamers in direct comparison to CMV- and EBV-specific MHC Streptamer staining by spiking antigen-specific T cells in PBMCs. The accuracy of the assay was high for all performed experiments with a mean recovery of 94% and a linear regression of 0.988. Differences were apparent regarding the limit of detection/quantification (LOD/LOQ). While results obtained for WT1 yielded an LOD/LOQ of 0.08 ± 0.04% and 0.11 ± 0.06% (1.33 ± 0.32 cells/µl and 1.9 ± 0.14 cells/µl), the overall LOD/LOQ was notably lower and accounted to 0.02 ± 0.02% and 0.05 ± 0.03% (0.60 ± 0.03 cells/µl and 1.27 ± 0.58 cells/µl). Subsequent screening of 22 healthy individuals revealed significantly higher values for WT1 (0.04 ± 0.02% and 1.5 ± 0.9 cells/µl) than for the irrelevant HIV pol (0.016 ± 0.01% and 0.5 ± 0.4 cells/µl). In contrast, no increased frequencies were observed for WT1-specific T cells compared to HIV-specific T cells using a classical wash-protocol. These findings strongly suggest the use of no-wash single-platform assays in combination with MHC Streptamer staining for the detection of low affinity LAA-specific T cells due to its high accuracy and sensitivity. © 2017 International Society for Advancement of Cytometry.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Complexo Principal de Histocompatibilidade/imunologia , Proteínas WT1/metabolismo , Citometria de Fluxo/métodos , Humanos , Coloração e Rotulagem/métodos
15.
Cytotherapy ; 19(2): 235-249, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27887866

RESUMO

BACKGROUND AIMS: Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications. METHODS: To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.z), composite CD28-CD3ζ or CD137-CD3ζ signaling domains (CARs 63.28.z and 63.137.z). RESULTS: Exposure of CD19-positive targets to CAR NK-92 cells resulted in formation of conjugates between NK and cancer cells, NK-cell degranulation and selective cytotoxicity toward established B-cell leukemia and lymphoma cells. Likewise, the CAR NK cells displayed targeted cell killing of primary pre-B-ALL blasts that were resistant to parental NK-92. Although all three CAR NK-92 cell variants were functionally active, NK-92/63.137.z cells were less effective than NK-92/63.z and NK-92/63.28.z in cell killing and cytokine production, pointing to differential effects of the costimulatory CD28 and CD137 domains. In a Raji B-cell lymphoma model in NOD-SCID IL2R γnull mice, treatment with NK-92/63.z cells, but not parental NK-92 cells, inhibited disease progression, indicating that selective cytotoxicity was retained in vivo. CONCLUSIONS: Our data demonstrate that it is feasible to generate CAR-engineered NK-92 cells with potent and selective antitumor activity. These cells may become clinically useful as a continuously expandable off-the-shelf cell therapeutic agent.


Assuntos
Citotoxicidade Imunológica , Células Matadoras Naturais , Leucemia Linfocítica Crônica de Células B/terapia , Linfoma/terapia , Proteínas Recombinantes de Fusão/metabolismo , Animais , Antígenos CD19/imunologia , Linfócitos B/imunologia , Complexo CD3/genética , Complexo CD3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citotoxicidade Imunológica/genética , Epitopos/genética , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Leucemia Linfocítica Crônica de Células B/imunologia , Ativação Linfocitária/genética , Linfoma/imunologia , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
17.
Transfus Apher Sci ; 56(3): 461-465, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28571932

RESUMO

BACKGROUND: Relatively slow-growing bacteria like Propionibacterium acnes represent a challenge for quality control investigations in sterility release testing of blood components and advanced therapeutic medicinal products (ATMPs). METHODS: A convenient validation with 7 matrices was performed using buffy coat, stem cells, islet cells, natural killer cells, red blood cells, platelets and plasma in the microbial detection system Bact/Alert®3D incubator. All matrix samples were spiked twofold with Propionibacterium acnes with approximately 50 colony forming units (CFUs) per bottle in iAST and iNST culture bottles for 14days using a multishot bioball. Additionally, the stem cell preparations were also incubated in iFAplus and iFNplus culture bottles, which include neutralizing polymers. RESULTS: The Bact/Alert®3D-System detected Propionibacterium acnes in anaerobic culture bottles in buffy coat [3.3 d (=positive signal day to detection as mean value)], red blood cells [3.2 d], platelets [3.3], plasma [3.7 d], natural killer cells [3.3 d] and islet cells [4.9 d], resp. No growth of Propionibacterium was found in autologous stem cells using iAST and iNST culture bottles. However, Propionibacterium was safely detected in the iFNplus culture bottle with polymers in the stem cell matrix. A successful validation of media was performed. CONCLUSIONS: Our study shows that Bact/Alert®3D-System safely detects the relatively slow-growing bacterium Propionibacterium acnes in different matrices in a practical way except stem cells. Using the iFNplus culture bottle for stem cell products positive signals were observed.


Assuntos
Bactérias/patogenicidade , Química Farmacêutica/métodos , Técnicas Microbiológicas/métodos , Humanos , Técnicas Microbiológicas/instrumentação , Propionibacterium acnes/isolamento & purificação , Controle de Qualidade
18.
J Cell Mol Med ; 20(7): 1287-94, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27008316

RESUMO

Many B-cell acute and chronic leukaemias tend to be resistant to killing by natural killer (NK) cells. The introduction of chimeric antigen receptors (CAR) into T cells or NK cells could potentially overcome this resistance. Here, we extend our previous observations on the resistance of malignant lymphoblasts to NK-92 cells, a continuously growing NK cell line, showing that anti-CD19-CAR (αCD19-CAR) engineered NK-92 cells can regain significant cytotoxicity against CD19 positive leukaemic cell lines and primary leukaemia cells that are resistant to cytolytic activity of parental NK-92 cells. The 'first generation' CAR was generated from a scFv (CD19) antibody fragment, coupled to a flexible hinge region, the CD3ζ chain and a Myc-tag and cloned into a retrovirus backbone. No difference in cytotoxic activity of NK-92 and transduced αCD19-CAR NK-92 cells towards CD19 negative targets was found. However, αCD19-CAR NK-92 cells specifically and efficiently lysed CD19 expressing B-precursor leukaemia cell lines as well as lymphoblasts from leukaemia patients. Since NK-92 cells can be easily expanded to clinical grade numbers under current Good Manufactoring Practice (cGMP) conditions and its safety has been documented in several phase I clinical studies, treatment with CAR modified NK-92 should be considered a treatment option for patients with lymphoid malignancies.


Assuntos
Linfócitos B/imunologia , Engenharia Genética , Células Matadoras Naturais/imunologia , Linfoma de Células B/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Citotoxicidade Imunológica , Humanos , Linfoma de Células B/patologia , Retroviridae/metabolismo , Anticorpos de Cadeia Única/metabolismo , Doadores de Tecidos , Transfecção
19.
Cancer Immunol Immunother ; 65(4): 477-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26810567

RESUMO

Natural killer (NK) cells have been used in several clinical trials as adaptive immunotherapy. The low numbers of these cells in peripheral blood mononuclear cells (PBMC) have resulted in various approaches to preferentially expand primary NK cells from PBMC. While some clinical trials have used the addition of interleukin 2 (IL-2) to co-stimulate the expansion of purified NK cells from allogeneic donors, recent studies have shown promising results in achieving in vitro expansion of NK cells to large numbers for adoptive immunotherapy. NK cell expansion requires multiple cell signals for survival, proliferation and activation. Thus, expansion strategies have been focused either to substitute these factors using autologous feeder cells or to use genetically modified allogeneic feeder cells. Recent developments in the clinical use of genetically modified NK cell lines with chimeric antigen receptors, the development of expansion protocols for the clinical use of NK cell from human embryonic stem cells and induced pluripotent stem cells are challenging improvements for NK cell-based immunotherapy. Transfer of several of these protocols to clinical-grade production of NK cells necessitates adaptation of good manufacturing practice conditions, and the development of freezing conditions to establish NK cell stocks will require some effort and, however, should enhance the therapeutic options of NK cells in clinical medicine.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/transplante , Células Cultivadas , Citotoxicidade Imunológica/efeitos dos fármacos , Citotoxicidade Imunológica/imunologia , Humanos , Interleucina-2/imunologia , Interleucina-2/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Modelos Imunológicos , Receptores KIR/imunologia
20.
Cancer Immunol Immunother ; 65(4): 485-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26559813

RESUMO

Natural killer (NK) cells are increasingly considered as immunotherapeutic agents in particular in the fight against cancers. NK cell therapies are potentially broadly applicable and, different from their T cell counterparts, do not cause graft-versus-host disease. Efficacy and clinical in vitro or in vivo expansion of primary NK cells will however always remain variable due to individual differences of donors or patients. Long-term storage of clinical NK cell lots to allow repeated clinical applications remains an additional challenge. In contrast, the established and well-characterized cell line NK-92 can be easily and reproducibly expanded from a good manufacturing practice (GMP)-compliant cryopreserved master cell bank. Moreover, no cost-intensive cell purification methods are required. To date, NK-92 has been intensively studied. The cells displayed superior cytotoxicity against a number of tumor types tested, which was confirmed in preclinical mouse studies. Subsequent clinical testing demonstrated safety of NK-92 infusions even at high doses. Despite the phase I nature of the trials conducted so far, some efficacy was noted, particularly against lung tumors. Furthermore, to overcome tumor resistance and for specific targeting, NK-92 has been engineered to express a number of different chimeric antigen receptors (CARs), including targeting, for example, CD19 or CD20 (anti-B cell malignancies), CD38 (anti-myeloma) or human epidermal growth factor receptor 2 (HER2; ErbB2; anti-epithelial cancers). The concept of an NK cell line as an allogeneic cell therapeutic produced 'off-the-shelf' on demand holds great promise for the development of effective treatments.


Assuntos
Citotoxicidade Imunológica , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/transplante , Neoplasias/terapia , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Ensaios Clínicos como Assunto , Humanos , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa