Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(7): 4272-4278, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31244233

RESUMO

We report on carrier recombination within self-catalyzed InAs/InAlAs core-shell nanowires (NWs), disentangling recombination rates at the ends, sidewalls, and interior of the NWs. Ultrafast optical pump-probe spectroscopy measurements were performed from 77-293 K on the free-standing, variable-sized NWs grown on lattice-mismatched Si(111) substrates, independently varying NW length and diameter. We found NW carrier recombination in the interior is nontrivial compared to the surface recombination, especially at 293 K. Surface recombination is dominated by carrier recombination at the NW sidewall, while contributions from the highly strained, impure NW base are negligible.

2.
Nano Lett ; 19(2): 990-996, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30620205

RESUMO

Contactless time-resolved optical pump-probe and external quantum efficiency measurements were performed in epitaxially grown free-standing wurtzite indium arsenide/indium aluminum arsenide (InAs-InAlAs) core-shell nanowires on Si (111) substrate from 77 to 293 K. The first independent investigation of Shockley-Read-Hall, radiative, and Auger recombination in InAs-based NWs is presented. Although the Shockley-Read-Hall recombination coefficient was found to be at least 2 orders of magnitude larger than the average experimental values of other reported InAs materials, the Auger recombination coefficient was reported to be 10-fold smaller. The very low Auger and high radiative rates result in an estimated peak internal quantum efficiency of the core-shell nanowires as high as 22% at 77 K, making these nanowires of potential interest for high-efficiency mid-infrared emitters. A greater than 2-fold enhancement in minority carrier lifetime was observed from capping nanowires with a thin InAlAs shell due to the passivation of surface defects.

3.
Appl Opt ; 56(31): NIR1-NIR2, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091670

RESUMO

This feature issue reports on the most recent advances in the field of III-V semiconductor lasers emitting in the near- to mid-IR spectral regions, with a particular focus on devices with an emission wavelength range between 1 and 13 µm.

4.
Nanotechnology ; 27(41): 412003, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27609489

RESUMO

There are a range of different methods to generate a nanostructured surface on silicon (Si) but the most cost effective and optically interesting is the metal assisted wet chemical etching (MACE) (Koynov et al 2006 Appl. Phys. Lett. 88 203107). MACE of Si is a controllable, room-temperature wet-chemical technique that uses a thin layer of metal to etch the surface of Si, leaving behind various nano- and micro-scale surface features or 'black silicon'. MACE-fabricated nanowires (NWs) provide improved antireflection and light trapping functionality (Toor et al 2016 Nanoscale 8 15448-66) compared with the traditional 'iso-texturing' (Campbell and Green 1987 J. Appl. Phys. 62 243-9). The resulting lower reflection and improved light trapping can lead to higher short circuit currents in NW solar cells (Toor et al 2011 Appl. Phys. Lett. 99 103501). In addition, NW cells can have higher fill factors and voltages than traditionally processed cells, thus leading to increased solar cell efficiencies (Cabrera et al 2013 IEEE J. Photovolt. 3 102-7). MACE NW processing also has synergy with next generation Si solar cell designs, such as thin epitaxial-Si and passivated emitter rear contact (Toor et al 2016 Nanoscale 8 15448-66). While several companies have begun manufacturing black Si, and many more are researching these techniques, much of the work has not been published in traditional journals and is publicly available only through conference proceedings and patent publications, which makes learning the field challenging. There have been three specialized review articles published recently on certain aspects of MACE or black Si, but do not present a full review that would benefit the industry (Liu et al 2014 Energy Environ. Sci. 7 3223-63; Yusufoglu et al 2015 IEEE J. Photovolt. 5 320-8; Huang et al 2011 Adv. Mater. 23 285-308). In this feature article, we review the chemistry of MACE and explore how changing parameters in the wet etch process effects the resulting texture on the Si surface. Then we review efforts to increase the uniformity and reproducibility of the MACE process, which is critical for commercializing the black Si technology.

5.
Front Oncol ; 13: 1305181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044994

RESUMO

Objective: Most of the work in terms of liquid biopsies in patients with solid tumors is focused on circulating tumor DNA (ctDNA). Our aim was to evaluate the feasibility of using circulating tumor cells (CTCs) in peripheral blood samples from patients with advanced or metastatic gastrointestinal (GI) cancers. Methods: In this prospective study, blood samples were collected from each patient in 2 AccuCyte® blood collection tubes and each tube underwent CTC analysis performed utilizing the RareCyte® platform. The results from both tubes were averaged and a total of 150 draws were done, with 281 unique reported results. The cadence of sampling was based on convenience sampling and piggybacked onto days of actual clinical follow-ups and treatment visits. The CTC results were correlated with patient- and tumor-related variables. Results: Data from a total of 59 unique patients were included in this study. Patients had a median age of 58 years, with males representing 69% of the study population. More than 57% had received treatment prior to taking blood samples. The type of GI malignancy varied, with more than half the patients having colorectal cancer (CRC, 54%) followed by esophageal/gastric cancer (17%). The least common cancer was cholangiocarcinoma (9%). The greatest number of CTCs were found in patients with colorectal cancer (Mean: 15.8 per 7.5 ml; Median: 7.5 per 7.5 ml). In comparison, patients with pancreatic cancer (PC) had considerably fewer CTCs (Mean: 4.2 per 7.5 ml; Median: 3 per 7.5 ml). Additionally, we found that patients receiving treatment had significantly fewer CTCs than patients who were not receiving treatment (Median 2.7 versus 0.7). CTC numbers showed noteworthy disparities between patients with responding/stable disease in comparison to those with untreated/progressive disease (Median of 2.7 versus 0). When CTCs were present, biomarker analyses of the four markers human epidermal growth factor receptor 2 (HER2)/programmed death-ligand 1 (PD-L1)/Kiel 67 (Ki-67)/epidermal growth factor receptor (EGFR) was feasible. Single cell sequencing confirmed the tumor of origin. Conclusion: Our study is one of the first prospective real-time studies evaluating CTCs in patients with GI malignancies. While ctDNA-based analyses are more common in clinical trials and practice, CTC analysis provides complementary information from a liquid biopsy perspective that is of value and worthy of continued research.

6.
ACS Omega ; 7(50): 47341-47348, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570182

RESUMO

Estrogens and estrogen-mimicking compounds in the aquatic environment are known to cause negative impacts to both ecosystems and human health. In this initial proof-of-principle study, we developed a novel vertically oriented silicon nanowire (vSiNW) array-based biosensor for low-cost, highly sensitive and selective detection of estrogens. The vSiNW arrays were formed using an inexpensive and scalable metal-assisted chemical etching (MACE) process. A vSiNW array-based p-n junction diode (vSiNW-diode) transducer design for the biosensor was used and functionalized via 3-aminopropyltriethoxysilane (APTES)-based silane chemistry to bond estrogen receptor-alpha (ER-α) to the surface of the vSiNWs. Following receptor conjugation, the biosensors were exposed to increasing concentrations of estradiol (E2), resulting in a well-calibrated sensor response (R 2 ≥ 0.84, 1-100 ng/mL concentration range). Fluorescence measurements quantified the distribution of estrogen receptors across the vSiNW array compared to planar Si, indicating an average of 7 times higher receptor presence on the vSiNW array surface. We tested the biosensor's target selectivity by comparing it to another estrogen (estrone [E1]) and an androgen (testosterone), where we measured a high positive electrical biosensor response after E1 exposure and a minimal response after testosterone. The regeneration capacity of the biosensor was tested following three successive rinses with phosphate buffer solution (PBS) between hormone exposure. Traditional horizontally oriented Si NW field effect transistor (hSiNW-FET)-based biosensors report electrical current changes at the nanoampere (nA) level that require bulky and expensive measurement equipment making them unsuitable for field measurements, whereas the reported vSiNW-diode biosensor exhibits current changes in the microampere (µA) range, demonstrating up to 100-fold electrical signal amplification, thus enabling sensor signal measurement using inexpensive electronics. The highly sensitive and specific vSiNW-diode biosensor developed here will enable the creation of low-cost, portable, field-deployable biosensors that can detect estrogenic compounds in waterways in real-time.

7.
Sens Biosensing Res ; 36: 100487, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35340912

RESUMO

The COVID-19 pandemic has caused tremendous damage to the world. In order to quickly and accurately diagnose the virus and contain the spread, there is a need for rapid, sensitive, accurate, and cost-effective SARS-CoV-2 biosensors. In this paper, we report on a novel biosensor based on angiotensin converting enzyme 2 (ACE-2)-conjugated vertically-oriented silicon nanowire (vSiNW) arrays that can detect the SARS-CoV-2 spike protein with high sensitivity and selectivity relative to negative controls. First, we demonstrate the efficacy of using ACE-2 receptor to detect the SARS-CoV-2 spike protein via a capture assay test, which confirms high specificity of ACE-2 against the mock protein, and high affinity between the spike and ACE-2. We then report on results for ACE-2-conjugated vSiNW arrays where the biosensor device architecture is based on a p-n junction transducer. We confirm via analytical modeling that the transduction mechanism of the biosensor involves induced surface charge depletion of the vSiNWs due to negative electrostatic surface potential induced by the spike protein after binding with ACE-2. This vSiNW surface charge modulation is measured via current-voltage characteristics of the functionalized biosensor. Calibrated concentration dependent electrical response of the vSiNW sensor confirms the limit-of-detection for virus spike concentration of 100 ng/ml (or 575 pM). The vSiNW sensor also exhibits highly specific response to the spike protein with respect to negative controls, offering a promising point-of-care detection method for SARS-CoV-2.

8.
J Biomed Opt ; 26(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33884777

RESUMO

SIGNIFICANCE: Mid-infrared (MIR) light refers to wavelengths ranging from 3 to 30 µm and is the most attractive spectral region for ablation of soft and hard tissues. This is because building blocks of biological tissue, such as water, proteins, and lipids, exhibit molecular vibrational modes in the MIR wavelengths that result in strong MIR light absorption. To date, researchers investigating MIR lasers for surgical applications have used bulky light sources, such as free electron lasers, nonlinear light generators, and carbon dioxide lasers. We demonstrate the use of a tiny (a few microns wide, a few millimeters long) MIR interband cascade laser (ICL) for surgical thermal ablation applications. AIM: Our goal is to demonstrate the use of an ICL for surgical thermal ablation and demonstrate its efficacy in ablating normal fibroblasts and primary undifferentiated pleomorphic sarcoma tumor cells (C1619). APPROACH: We conducted Fourier transform infrared spectroscopy analysis of healthy and cancerous tissue samples, which indicated that the absorption of tumor tissue is higher than healthy tissue around 3.3-µm wavelength. These results enabled us to select an ICL emission wavelength, λ, of 3.3 µm to probe normal fibroblast and primary undifferentiated pleomorphic sarcoma cell survival after ICL exposure. RESULTS: We show that the absorption of tumorous tissue is higher than that of healthy tissues around the 3-µm MIR wavelength. We demonstrate that the ICL is able to ablate cancer cells at very low-power levels that can be clinically implemented but that this effect does not appear to be specific to C1619 when compared to normal fibroblasts. CONCLUSIONS: Our study demonstrates that ICLs may represent an exciting new avenue toward precise laser-based thermal ablation.


Assuntos
Terapia a Laser , Sarcoma , Humanos , Raios Infravermelhos , Lasers , Sarcoma/diagnóstico por imagem , Sarcoma/cirurgia , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Cancers (Basel) ; 13(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567506

RESUMO

Sarcoma is a widely varied and devastating oncological subtype, with overall five-year survival of 65% that drops to 16% with the presence of metastatic disease at diagnosis. Standard of care for localized sarcomas is predicated on local control with wide-local resection and radiation therapy, or, less commonly, chemotherapy, depending on tumor subtype. Verteporfin has the potential to be incorporated into this standard of care due to its unique molecular properties: inhibition of the upregulated Hippo pathway that frequently drives soft tissue sarcoma and photodynamic therapy-mediated necrosis due to oxidative damage. The initial anti-proliferative effect of verteporfin is mediated via binding and dissociation of YAP/TEAD proteins from the nucleus, ultimately leading to decreased cell proliferation as demonstrated in multiple in vitro studies. This effect has the potential to be compounded with use of photodynamic therapy to directly induce cellular necrosis with use of a clinical laser. Photodynamic therapy has been incorporated into multiple malignancies and has the potential to be incorporated into sarcoma treatment.

10.
Opt Lett ; 35(20): 3324-6, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20967054

RESUMO

We demonstrate on-chip hybrid integration of chalcogenide glass waveguides and quantum cascade lasers (QCLs). Integration is achieved using an additive solution-casting and molding method to directly form As(2)S(3) strip waveguides on an existing QCL chip. Integrated As(2)S(3) strip waveguides constructed in this manner display strong optical confinement and guiding around 90° bends, with a NA of 0.24 and bend loss of 12.9dB at a 1mm radius (λ=4.8µm).

11.
Sci Rep ; 9(1): 3083, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816138

RESUMO

Terahertz (THz) imaging has attracted much attention within the past decade as an emerging nondestructive evaluation technique. In this paper, we present a novel Laser-based Metamaterial Fabrication (LMF) process for high-throughput fabrication of transparent conducting surfaces on dielectric substrates such as glass, quartz and polymers to achieve tunable THz bandpass characteristics. The LMF process comprises two steps: (1) applying ultrathin-film metal deposition, with a typical thickness of 10 nm, on the dielectric substrate; (2) creating a ~100-micron feature pattern on the metal film using nanosecond pulsed laser ablation. Our results demonstrate the use of laser-textured ultra-thin film with newly integrated functional capabilities: (a) highly conductive with ~20 Ω/sq sheet resistance, (b) optically transparent with ~70% transmittance within visible spectrum, and (c) tunable bandpass filtering effect in the THz frequency range. A numerical analysis is performed to help determine the fundamental mechanism of THz bandpass filtering for the LMF-built samples. The scientific findings from this work render an economical and scalable manufacturing technique capable of treating large surface area for multi-functional metamaterials.

12.
Biomed Opt Express ; 9(12): 6255-6257, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31065426

RESUMO

This feature issue contains a series of papers that report the most recent advances in the field of mid-infrared light sources used for medical applications, including tissue imaging, reconstruction, excision, and ablation. Many biomolecular compounds have strong resonances in the mid-infrared region and medicine is ideally suited to exploit this. The precision, sterility, and versatility of light in mid-infrared is opening more opportunities and this feature issue captures some of the most exciting.

13.
Reprod Toxicol ; 69: 34-42, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28143724

RESUMO

Perfluorooctanoic acid (PFOA) is a persistent, toxic, anthropogenic chemical recalcitrant to biodegradation. Based on previous studies in lower and higher vertebrates, it was hypothesized that chronic, sub-lethal, embryonic exposure to PFOA in zebrafish (Danio rerio) would adversely impact fish development, survival, and fecundity. Zebrafish embryo/sac-fry were water exposed to 2.0 or 0nM PFOA from 3 to 120hpf, and juvenile to adult cohorts were fed spiked food (8 pM) until 6 months. After chronic exposure, PFOA exposed fish were significantly smaller in total weight and length. Gene expression analysis found a significant decrease of transporters slco2b1, slco4a1, slco3a1 and tgfb1a, and a significant increase of slco1d1 expression. PFOA exposed fish produced significantly fewer eggs with reduced viability and developmental stage delay in F1. Chronic, low-dose exposure of zebrafish to PFOA significantly altered normal development, survival and fecundity and would likely impact wild fish population fitness in watersheds chronically exposed to PFOA.


Assuntos
Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia
14.
Nanoscale ; 8(34): 15448-66, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27533490

RESUMO

Metal-assisted catalyzed etching (MACE) of silicon (Si) is a controllable, room-temperature wet-chemical technique that uses a thin layer of metal to etch the surface of Si, leaving behind various nano- and micro-scale surface features, including nanowires (NWs), that can be tuned to achieve various useful engineering goals, in particular with respect to Si solar cells. In this review, we introduce the science and technology of MACE from the literature, and provide an in-depth analysis of MACE to enhance Si solar cells, including the outlook for commercial applications of this technology.

15.
ACS Nano ; 5(6): 4641-7, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21456579

RESUMO

Metamaterials offer a new approach to create surface coatings with highly customizable electromagnetic absorption from the microwave to the optical regimes. Thus far, efficient metamaterial absorbers have been demonstrated at microwave frequencies, with recent efforts aimed at much shorter terahertz and infrared wavelengths. The present infrared absorbers have been constructed from arrays of nanoscale metal resonators with simple circular or cross-shaped geometries, which provide a single band response. In this paper, we demonstrate a conformal metamaterial absorber with a narrow band, polarization-independent absorptivity of >90% over a wide ±50° angular range centered at mid-infrared wavelengths of 3.3 and 3.9 µm. The highly efficient dual-band metamaterial was realized by using a genetic algorithm to identify an array of H-shaped nanoresonators with an effective electric and magnetic response that maximizes absorption in each wavelength band when patterned on a flexible Kapton and Au thin film substrate stack. This conformal metamaterial absorber maintains its absorption properties when integrated onto curved surfaces of arbitrary materials, making it attractive for advanced coatings that suppress the infrared reflection from the protected surface.


Assuntos
Nanotecnologia/métodos , Espectrofotometria Infravermelho/métodos , Absorção , Algoritmos , Análise de Elementos Finitos , Ouro/química , Teste de Materiais , Metais/química , Microscopia Eletrônica de Varredura/métodos , Modelos Estatísticos , Conformação Molecular , Radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa