Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Isotopes Environ Health Stud ; 55(2): 129-149, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30793970

RESUMO

2H/1H ratios in animal biomass reflect isotopic input from food and water. A 10-week controlled laboratory study raised 48 mice divided in two generations (8 mothers Mus musculus and their offspring). The mice were divided into four groups based on the combination of 2H, 13C, 15N-enriched and non-enriched food and water. Glycine, the most common amino acid in bone collagen, carried the 2H, 13C, 15N-isotopic spike in food. ANOVA data analysis indicated that hydrogen in food accounted for ∼81 % of the hydrogen isotope inventory in collagen whereas drinking water hydrogen contributed ∼17 %. Air humidity contributed an unspecified amount. Additionally, we monitored 13C and 15N-enrichment in bone collagen and found strong linear correlations with the 2H-enrichment. The experiments with food and water indicate two biosynthetic pathways, namely (i) de novo creation of non-essential amino acids using hydrogen from water, and (ii) the integration of essential and non-essential amino acids from food. The lower rate of isotope uptake in mothers' collagen relative to their offspring indicates incomplete bone collagen turnover after ten weeks. The variance of hydrogen stable isotope ratios within the same cohort may limit its usefulness as a single sample proxy for archaeological or palaeoenvironmental research.


Assuntos
Ração Animal/análise , Osso e Ossos/química , Isótopos de Carbono/análise , Colágeno/química , Água Potável/análise , Hidrogênio/análise , Isótopos de Nitrogênio/análise , Aminoácidos/química , Animais , Camundongos
2.
Rapid Commun Mass Spectrom ; 23(7): 949-56, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19241415

RESUMO

Hydrogen isotopic analysis of organic materials has been widely applied in studies of paleoclimate, animal migration, forensics, food and flavor authentication, and the origin and diagenesis of organic matter. Hydrogen bound to carbon (C-H) generally retains isotopic information about the water present during organic matter synthesis and associated biosynthetic fractionations, but hydrogen bound to other elements (O, S, or N) can readily exchange with atmospheric water vapor and reflects recent exposure to water or vapor. These two pools must be separated to obtain meaningful information from isotope ratios of organic materials. Previously published analytical methods either replace exchangeable H chemically or control its isotopic composition, usually by equilibration with water or waters of known isotopic composition. In addition, the fraction of H that is exchangeable can vary among samples and is itself of scientific interest. Here we report an improved and automated double-equilibration approach.Samples are loaded in a 50-position autosampler carousel in an air-tight aluminum equilibration chamber. Water vapor of known isotopic composition is pumped through the chamber at 115 degrees C for at least 6 h. After flushing with dry N(2) and being cooled, the carousel is rapidly transferred from the equilibration chamber to a He-purged autosampler attached to a pyrolysis elemental analyzer connected to an isotope ratio mass spectrometer. By equilibrating two aliquots of each sample with two isotopically distinct waters, it is possible to calculate both (1) the D/H ratio of non-exchangeable H, and (2) the fraction of H that is exchangeable. Relative to previous double-equilibration techniques, this approach offers significant reductions in sample size and labor by allowing simultaneous equilibration of several tens of samples.


Assuntos
Deutério/química , Substâncias Húmicas/análise , Espectrometria de Massas/métodos , Animais , Celulose/química , Colágeno/química , Cervos , Humanos , Marcação por Isótopo , Isótopos , Reprodutibilidade dos Testes , Vapor/análise
3.
Am J Bot ; 94(2): 173-83, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21642219

RESUMO

Plant molecular systematic studies of closely related taxa have relied heavily on sequence data from nuclear ITS and cpDNA. Positive attributes of using ITS sequence data include the rapid rate of evolution compared to most plastid loci and availability of universal primers for amplification and sequencing. On the other hand, ITS sequence data may not adequately track organismal phylogeny if concerted evolution and high rDNA array copy number do not permit identification of orthologous copies. Shaw et al. (American Journal of Botany 92: 142-166) recently identified nine plastid regions that appear to provide more potentially informative characters than many other plastid loci. In the present study, sequences of these loci and ITS were obtained for six taxonomic groups in which phylogenetic relationships have been difficult to establish using other data. The relative utility of these regions was compared by assessing the number of parsimony informative characters, character congruence, resolution of inferred trees, clade support, and accuracy. No single locus emerged as the best in all lineages for any of these measures of utility. Results further indicated that in preliminary studies, sampling strategy should include at least four exemplar taxa. The importance of sampling data from independent distributions is also discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa