Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Methods Biomech Biomed Engin ; 22(4): 386-395, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30773039

RESUMO

The aerodynamic features associated with the rotation of a cyclist's legs have long been a research topic for sport scientists and engineers, with studies in recent years shedding new light on the flow structures and drag trends. While the arm-crank rotation cycle of a hand-cyclist bears some resemblance to the leg rotation of a traditional cyclist, the aerodynamics around the athlete are fundamentally different due to the proximity and position of the athlete's torso with respect to their arms, especially since both arm-cranks move in phase with each other. This research investigates the impact of arm-crank position on the drag acting on a hand-cyclist and is applied to a hill descent position where the athlete is not pedalling. Four primary arm-crank positions, namely 3, 6, 9, and 12 o'clock of a Paralympic hand-cyclist were investigated with CFD for five yaw angles, namely 0°, 5°, 10°, 15°, and 20°. The results demonstrated that the 3 and 12 o'clock positions (when observed from the left side of the hand-cyclist) yielded the highest drag area at 0° yaw, while the 9 o'clock position yielded the lowest drag area for all yaw angles. This is in contrast to the 6 o'clock position traditionally held by hand-cyclists during a descent to reduce aerodynamic drag.


Assuntos
Braço/fisiopatologia , Ciclismo , Mãos/fisiopatologia , Esportes , Atletas , Simulação por Computador , Humanos , Pressão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa