Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483745

RESUMO

Previous studies have shown a correlation between nitrogen levels and Cryptococcus neoformans pathogenicity. Here we report on the in vivo effects of cryptococcal pre-exposure to ecologically relevant nitrogen levels. C. neoformans H99 was cultured in yeast carbon base (YCB) supplemented with 0.53 g/L NH4Cl and 0.21 g/L NH4Cl, respectively, and used to infect larvae of the Greater Wax moth, Galleria mellonella. Cells cultured in low nitrogen YCB (LN) were more virulent compared to cells cultured in high nitrogen YCB (HN). Microscopic examination of haemolymph collected from infected larvae revealed that cells cultured in LN were larger than cells cultured in HN, with the majority of LN cells exceeding 10 µm and possibly entering titanisation. Additionally, compared to HN-cultured cells, fewer LN-cultured cells were engulfed by macrophages. The enhanced virulence of LN-cultured cells was attributed to the increased cell size in vivo. In contrast, reduced macrophage uptake was attributed to increased capsule thickness of in vitro cells. Not only do these findings demonstrate the effects of culture conditions, specifically nitrogen levels, on C. neoformans virulence, but they also highlight the importance of isolate background in the cryptococcal-host interaction.

2.
Microb Pathog ; 158: 105076, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34216740

RESUMO

The urease enzyme of Cryptococcus neoformans is linked to different metabolic pathways within the yeast cell, several of which are involved in polyamine metabolism. Cryptococcal biogenic amine production is, however, largely unexplored and is yet to be investigated in relation to urease. The aim of this study was therefore to explore and compare polyamine metabolism in wild-type, urease-negative and urease-reconstituted strains of C. neoformans. Mass spectrometry analysis showed that agmatine and spermidine were the major extra- and intracellular polyamines of C. neoformans and significant differences were observed between 26 and 37 °C. In addition, compared to the wild-type, the relative percentages of extracellular putrescine and spermidine were found to be lower and agmatine higher in cultures of the urease-deficient mutant. The inverse was true for intracellular spermidine and agmatine. Cyclohexylamine was a more potent polyamine inhibitor compared to DL-α-difluoromethylornithine and inhibitory effects were more pronounced at 37 °C than at 26 °C. At both temperatures, the urease-deficient mutant was less susceptible to cyclohexylamine treatment compared to the wild-type. For both inhibitors, growth inhibition was alleviated with polyamine supplementation. This study has provided novel insight into the polyamine metabolism of C. neoformans, highlighting the involvement of urease in biogenic amine production.


Assuntos
Cryptococcus neoformans , Poliaminas/metabolismo , Urease/metabolismo , Putrescina , Espermidina
3.
FEMS Yeast Res ; 21(4)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33893798

RESUMO

Nitrogen availability is vital for the growth and survival of Cryptococcus neoformans in the natural environment. Two major ecological reservoirs were previously described for C. neoformans, namely, pigeon guano and the woody debris of various tree species. In contrast to the abundance of available nitrogen in guano, C. neoformans must adapt to severely limited nitrogen conditions within arboreal ecological niches. Previously, we demonstrated the role of nitrogen limitation in the production of cryptococcal virulence factors and drug tolerance. The genetic response underlying this adaptation to nitrogen deficiency, however, remains to be determined. Therefore, in the present study we investigated the transcriptomic response of C. neoformans to ecologically relevant nitrogen concentrations using RNA-sequencing. Our data revealed that low nitrogen conditions modulate the expression of numerous virulence genes in C. neoformans. Among these were, CTR4 and CGP1, which showed highly significant modulation under low nitrogen conditions. Furthermore, data analysis revealed the upregulation of antifungal tolerance-related genes in low nitrogen conditions, including genes involved in ergosterol biosynthetic processes and cell wall integrity. Overall, our findings provide insight into the survival of C. neoformans in nitrogen-poor ecological niches and suggest that pre-adaptation to these conditions may influence the pathobiology of this yeast.


Assuntos
Adaptação Fisiológica , Cryptococcus neoformans/metabolismo , Nitrogênio/metabolismo , Transcriptoma , Parede Celular/metabolismo , Ecossistema , Regulação Fúngica da Expressão Gênica , Estresse Oxidativo , Virulência
4.
FEMS Yeast Res ; 20(2)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073632

RESUMO

Environmental stress often causes phenotypic changes among pathogenic cryptococci, such as altered antifungal susceptibility, changes in capsule and melanin formation, as well as altered levels of the membrane sterol and antifungal target, ergosterol. We therefore hypothesised that nitrogen limitation, a prevalent environmental stress in the natural habitat of these yeasts, might affect virulence and antifungal susceptibility. We tested the effect of different nitrogen concentrations on capsule, melanin and ergosterol biosynthesis, as well as amphotericin B (AmB) and fluconazole (FLU) susceptibility. This was achieved by culturing cryptococcal strains representing Cryptococcus neoformans and Cryptococcus gattii in media with high (0.53 g/l), control (0.42 g/l) and low (0.21 g/l) NH4Cl concentrations. India ink staining was used to determine capsule thickness microscopically, while melanin and ergosterol content were determined spectrophotometrically. We found that lower nitrogen concentrations enhanced both ergosterol and capsule biosynthesis, while a variable effect was observed on melanisation. Evaluation of drug tolerance using time-kill methodology, as well as tests for FLU heteroresistance, revealed that the low nitrogen cultures had the highest survival percentages in the presence of both AmB and FLU, and showed the highest frequency of FLU heteroresistance, suggesting that nitrogen concentration may indeed influence drug tolerance.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Cryptococcus/efeitos dos fármacos , Cryptococcus/metabolismo , Fluconazol/farmacologia , Nitrogênio/metabolismo , Cloreto de Amônio/análise , Cloreto de Amônio/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Cryptococcus/classificação , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Meios de Cultura/química , Ergosterol/análise , Ergosterol/biossíntese , Melaninas/análise , Melaninas/biossíntese , Testes de Sensibilidade Microbiana , Nitrogênio/análise
5.
FEMS Yeast Res ; 20(4)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490521

RESUMO

Cryptococcal urease is believed to be important for the degradation of exogenous urea that the yeast encounters both in its natural environment and within the human host. Endogenous urea produced by the yeast's own metabolic reactions, however, may also serve as a substrate for the urease enzyme. Using wild-type, urease-deletion mutant and urease-reconstituted strains of Cryptococcus neoformans H99, we studied reactions located up- and downstream from endogenous urea. We demonstrated that urease is important for cryptococcal growth and that, compared to nutrient-rich conditions at 26°C, urease activity is higher under nutrient-limited conditions at 37°C. Compared to cells with a functional urease enzyme, urease-deficient cells had significantly higher intracellular urea levels and also showed more arginase activity, which may act as a potential source of endogenous urea. Metabolic reactions linked to arginase were also affected, since urease-positive and urease-negative cells differed with respect to agmatinase activity, polyamine synthesis, and intracellular levels of proline and reactive oxygen species. Lastly, urease-deficient cells showed higher melanin levels at 26°C than wild-type cells, while the inverse was observed at 37°C. These results suggest that cryptococcal urease is associated with the functioning of key metabolic pathways within the yeast cell.


Assuntos
Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/patogenicidade , Redes e Vias Metabólicas , Ureia/metabolismo , Urease/genética , Fatores de Virulência/metabolismo , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/metabolismo , Humanos , Viabilidade Microbiana , Urease/metabolismo , Virulência
7.
Folia Microbiol (Praha) ; 67(6): 899-911, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35767213

RESUMO

Bark beetles are destructive insect pests known to form symbioses with different fungal taxa, including yeasts. The aim of this study was to (1) determine the prevalence of the rare yeast Hyphopichia heimii in bark beetle frass from wild olive trees in South Africa and to (2) predict the potential interaction of this yeast with trees and bark beetles. Twenty-eight culturable yeast species were isolated from frass in 35 bark beetle galleries, including representatives of H. heimii from nine samples. Physiological characterization of H. heimii isolates revealed that none was able to degrade complex polymers present in hemicellulose; however, all were able to assimilate sucrose and cellobiose, sugars associated with an arboreal habitat. All isolates were able to produce the auxin indole acetic acid, indicative of a potential symbiosis with the tree. Sterol analysis revealed that the isolates possessed ergosterol quantities ranging from 3.644 ± 0.119 to 13.920 ± 1.230 mg/g dry cell weight, which suggested that H. heimii could serve as a source of sterols in bark beetle diets, as is known for other bark beetle-associated fungi. In addition, gas chromatography-mass spectrometry demonstrated that at least one of the isolates, Hyphopichia heimii CAB 1614, was able to convert the insect pheromone cis-verbenol to the anti-aggregation pheromone verbenone. This indicated that H. heimii could potentially influence beetle behaviour. These results support the contention of a tripartite symbiosis between H. heimii, olive trees, and bark beetles.


Assuntos
Besouros , Olea , Gorgulhos , Animais , Casca de Planta/microbiologia , Besouros/microbiologia , Besouros/fisiologia , Feromônios/metabolismo , Leveduras
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa