Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Neurosci ; 43(34): 5989-5995, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612141

RESUMO

The brain is a complex system comprising a myriad of interacting neurons, posing significant challenges in understanding its structure, function, and dynamics. Network science has emerged as a powerful tool for studying such interconnected systems, offering a framework for integrating multiscale data and complexity. To date, network methods have significantly advanced functional imaging studies of the human brain and have facilitated the development of control theory-based applications for directing brain activity. Here, we discuss emerging frontiers for network neuroscience in the brain atlas era, addressing the challenges and opportunities in integrating multiple data streams for understanding the neural transitions from development to healthy function to disease. We underscore the importance of fostering interdisciplinary opportunities through workshops, conferences, and funding initiatives, such as supporting students and postdoctoral fellows with interests in both disciplines. By bringing together the network science and neuroscience communities, we can develop novel network-based methods tailored to neural circuits, paving the way toward a deeper understanding of the brain and its functions, as well as offering new challenges for network science.


Assuntos
Neurociências , Humanos , Encéfalo , Impulso (Psicologia) , Neurônios , Pesquisadores
2.
PLoS Biol ; 15(7): e2002612, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28671956

RESUMO

Understanding the rat neurochemical connectome is fundamental for exploring neuronal information processing. By using advanced data mining, supervised machine learning, and network analysis, this study integrates over 5 decades of neuroanatomical investigations into a multiscale, multilayer neurochemical connectome of the rat brain. This neurochemical connectivity database (ChemNetDB) is supported by comprehensive systematically-determined receptor distribution maps. The rat connectome has an onion-type structural organization and shares a number of structural features with mesoscale connectomes of mouse and macaque. Furthermore, we demonstrate that extremal values of graph theoretical measures (e.g., degree and betweenness) are associated with evolutionary-conserved deep brain structures such as amygdala, bed nucleus of the stria terminalis, dorsal raphe, and lateral hypothalamus, which regulate primitive, yet fundamental functions, such as circadian rhythms, reward, aggression, anxiety, and fear. The ChemNetDB is a freely available resource for systems analysis of motor, sensory, emotional, and cognitive information processing.


Assuntos
Bases de Dados Factuais , Modelos Biológicos , Rede Nervosa , Animais , Análise por Conglomerados , Simulação por Computador , Ratos
3.
PLoS Biol ; 14(7): e1002512, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27441598

RESUMO

Mammals show a wide range of brain sizes, reflecting adaptation to diverse habitats. Comparing interareal cortical networks across brains of different sizes and mammalian orders provides robust information on evolutionarily preserved features and species-specific processing modalities. However, these networks are spatially embedded, directed, and weighted, making comparisons challenging. Using tract tracing data from macaque and mouse, we show the existence of a general organizational principle based on an exponential distance rule (EDR) and cortical geometry, enabling network comparisons within the same model framework. These comparisons reveal the existence of network invariants between mouse and macaque, exemplified in graph motif profiles and connection similarity indices, but also significant differences, such as fractionally smaller and much weaker long-distance connections in the macaque than in mouse. The latter lends credence to the prediction that long-distance cortico-cortical connections could be very weak in the much-expanded human cortex, implying an increased susceptibility to disconnection syndromes such as Alzheimer disease and schizophrenia. Finally, our data from tracer experiments involving only gray matter connections in the primary visual areas of both species show that an EDR holds at local scales as well (within 1.5 mm), supporting the hypothesis that it is a universally valid property across all scales and, possibly, across the mammalian class.


Assuntos
Córtex Cerebral/fisiologia , Conectoma/métodos , Modelos Neurológicos , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Algoritmos , Animais , Córtex Cerebral/anatomia & histologia , Simulação por Computador , Feminino , Humanos , Macaca , Masculino , Camundongos , Modelos Anatômicos , Rede Nervosa/anatomia & histologia , Vias Neurais/anatomia & histologia , Especificidade da Espécie
4.
Proc Natl Acad Sci U S A ; 110(13): 5187-92, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479610

RESUMO

We investigated the influence of interareal distance on connectivity patterns in a database obtained from the injection of retrograde tracers in 29 areas distributed over six regions (occipital, temporal, parietal, frontal, prefrontal, and limbic). One-third of the 1,615 pathways projecting to the 29 target areas were reported only recently and deemed new-found projections (NFPs). NFPs are predominantly long-range, low-weight connections. A minimum dominating set analysis (a graph theoretic measure) shows that NFPs play a major role in globalizing input to small groups of areas. Randomization tests show that (i) NFPs make important contributions to the specificity of the connectivity profile of individual cortical areas, and (ii) NFPs share key properties with known connections at the same distance. We developed a similarity index, which shows that intraregion similarity is high, whereas the interregion similarity declines with distance. For area pairs, there is a steep decline with distance in the similarity and probability of being connected. Nevertheless, the present findings reveal an unexpected binary specificity despite the high density (66%) of the cortical graph. This specificity is made possible because connections are largely concentrated over short distances. These findings emphasize the importance of long-distance connections in the connectivity profile of an area. We demonstrate that long-distance connections are particularly prevalent for prefrontal areas, where they may play a prominent role in large-scale communication and information integration.


Assuntos
Mapeamento Encefálico , Córtex Cerebral , Bases de Dados Factuais , Rede Nervosa , Animais , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Macaca , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia
5.
Phys Rev Lett ; 114(15): 158701, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25933345

RESUMO

Based on Jaynes's maximum entropy principle, exponential random graphs provide a family of principled models that allow the prediction of network properties as constrained by empirical data (observables). However, their use is often hindered by the degeneracy problem characterized by spontaneous symmetry breaking, where predictions fail. Here we show that degeneracy appears when the corresponding density of states function is not log-concave, which is typically the consequence of nonlinear relationships between the constraining observables. Exploiting these nonlinear relationships here we propose a solution to the degeneracy problem for a large class of systems via transformations that render the density of states function log-concave. The effectiveness of the method is demonstrated on examples.

6.
Phys Rev E ; 109(2-1): 024113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491611

RESUMO

To better understand the temporal characteristics and the lifetime of fluctuations in stochastic processes in networks, we investigated diffusive persistence in various graphs. Global diffusive persistence is defined as the fraction of nodes for which the diffusive field at a site (or node) has not changed sign up to time t (or, in general, that the node remained active or inactive in discrete models). Here we investigate disordered and random networks and show that the behavior of the persistence depends on the topology of the network. In two-dimensional (2D) disordered networks, we find that above the percolation threshold diffusive persistence scales similarly as in the original 2D regular lattice, according to a power law P(t,L)∼t^{-θ} with an exponent θ≃0.186, in the limit of large linear system size L. At the percolation threshold, however, the scaling exponent changes to θ≃0.141, as the result of the interplay of diffusive persistence and the underlying structural transition in the disordered lattice at the percolation threshold. Moreover, studying finite-size effects for 2D lattices at and above the percolation threshold, we find that at the percolation threshold, the long-time asymptotic value obeys a power law P(t,L)∼L^{-zθ} with z≃2.86 instead of the value of z=2 normally associated with finite-size effects on 2D regular lattices. In contrast, we observe that in random networks without a local regular structure, such as Erdos-Rényi networks, no simple power-law scaling behavior exists above the percolation threshold.

7.
Netw Neurosci ; 8(1): 138-157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562298

RESUMO

Despite a five order of magnitude range in size, the brains of mammals share many anatomical and functional characteristics that translate into cortical network commonalities. Here we develop a machine learning framework to quantify the degree of predictability of the weighted interareal cortical matrix. Partial network connectivity data were obtained with retrograde tract-tracing experiments generated with a consistent methodology, supplemented by projection length measurements in a nonhuman primate (macaque) and a rodent (mouse). We show that there is a significant level of predictability embedded in the interareal cortical networks of both species. At the binary level, links are predictable with an area under the ROC curve of at least 0.8 for the macaque. Weighted medium and strong links are predictable with an 85%-90% accuracy (mouse) and 70%-80% (macaque), whereas weak links are not predictable in either species. These observations reinforce earlier observations that the formation and evolution of the cortical network at the mesoscale is, to a large extent, rule based. Using the methodology presented here, we performed imputations on all area pairs, generating samples for the complete interareal network in both species. These are necessary for comparative studies of the connectome with minimal bias, both within and across species.

8.
Neuroimage ; 80: 37-45, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23603347

RESUMO

Numerous studies have investigated inter-areal cortical networks using either diffusion MRI or axonal tract-tracing. While both techniques have been used in non-human primates only diffusion MRI can be used in human. The advantage of axonal tract-tracing is that unlike diffusion MRI it has a high single-cell resolution, and most importantly gives the laminar origins and terminations of inter-areal pathways. It, therefore, can be used to obtain the weighted and directed cortical graph. Axonal tract tracing has traditionally been collated from multiple experiments in order to determine the large-scale inter-areal network. Collated data of this kind present numerous problems due to lack of coherence across studies and incomplete exploitation. We have therefore developed a consistent data base which uses standardized experimental and parcellation procedures across brains. Here we review our recent publications analyzing the consistent database obtained from retrograde tracer injections in 29 cortical areas in a parcellation of 91 areas of the macaque cortex. Compared to collated data, our results show that the cortical graph is dense. Density is a graph theoretic measure, and refers to the number of observed connections in a square matrix expressed as a percentage of the possible connections. In our database 66% of the connections that can exist do exist which is considerably higher than the graph densities reported in studies using collated data (7-32%). The consistent data base reports 37% more pathways than previously reported, many of which are unidirectional. This latter and unexpected property has not been reported in earlier studies. Given the high density, the resulting cortical graph shows other unexpected properties. Firstly, the binary specificity is considerably higher than expected. As we show, this property is a consequence of the inter-areal connection probability declining with distance. Secondly, small groups of areas are found to receive high numbers of inputs. This is termed a high domination and is analyzed by a graph theoretic procedure known as a minimum dominating set analysis. We discuss these findings with respect to the long-distance connections, over half of which were previously not reported. These so called new found projections display high specificities and play an important integration role across large regions. It is to be expected that the future examination of the 62 remaining areas will disclose further levels of complexity and enable construction of a weighted directed graph revealing the hierarchical complexity of the cortex.


Assuntos
Córtex Cerebral/anatomia & histologia , Conectoma/métodos , Modelos Anatômicos , Modelos Neurológicos , Modelos Estatísticos , Rede Nervosa/anatomia & histologia , Vias Neurais/anatomia & histologia , Animais , Simulação por Computador , Humanos , Macaca
9.
ArXiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214134

RESUMO

The brain is a complex system comprising a myriad of interacting elements, posing significant challenges in understanding its structure, function, and dynamics. Network science has emerged as a powerful tool for studying such intricate systems, offering a framework for integrating multiscale data and complexity. Here, we discuss the application of network science in the study of the brain, addressing topics such as network models and metrics, the connectome, and the role of dynamics in neural networks. We explore the challenges and opportunities in integrating multiple data streams for understanding the neural transitions from development to healthy function to disease, and discuss the potential for collaboration between network science and neuroscience communities. We underscore the importance of fostering interdisciplinary opportunities through funding initiatives, workshops, and conferences, as well as supporting students and postdoctoral fellows with interests in both disciplines. By uniting the network science and neuroscience communities, we can develop novel network-based methods tailored to neural circuits, paving the way towards a deeper understanding of the brain and its functions.

10.
Phys Rev Lett ; 105(3): 038701, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867816

RESUMO

Betweenness centrality lies at the core of both transport and structural vulnerability properties of complex networks; however, it is computationally costly, and its measurement for networks with millions of nodes is nearly impossible. By introducing a multiscale decomposition of shortest paths, we show that the contributions to betweenness coming from geodesics not longer than L obey a characteristic scaling versus L, which can be used to predict the distribution of the full centralities. The method is also illustrated on a real-world social network of 5.5 × 10(6) nodes and 2.7 × 10(7) links.

11.
Nature ; 428(6984): 716, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15085122

RESUMO

A large number of complex networks are scale-free--that is, they follow a power-law degree distribution. Here we propose that the emergence of many scale-free networks is tied to the efficiency of transport and flow processing across these structures. In particular, we show that for large networks on which flows are influenced or generated by gradients of a scalar distributed on the nodes, scale-free structures will ensure efficient processing, whereas structures that are not scale-free, such as random graphs, will become congested.

12.
Nature ; 429(6988): 180-4, 2004 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15141212

RESUMO

Most mathematical models for the spread of disease use differential equations based on uniform mixing assumptions or ad hoc models for the contact process. Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals between specific locations. The graphs are generated by large-scale individual-based urban traffic simulations built on actual census, land-use and population-mobility data. We find that the contact network among people is a strongly connected small-world-like graph with a well-defined scale for the degree distribution. However, the locations graph is scale-free, which allows highly efficient outbreak detection by placing sensors in the hubs of the locations network. Within this large-scale simulation framework, we then analyse the relative merits of several proposed mitigation strategies for smallpox spread. Our results suggest that outbreaks can be contained by a strategy of targeted vaccination combined with early detection without resorting to mass vaccination of a population.


Assuntos
Surtos de Doenças/prevenção & controle , Modelos Biológicos , Varíola/prevenção & controle , Varíola/transmissão , Saúde da População Urbana , População Urbana , Busca de Comunicante , Surtos de Doenças/estatística & dados numéricos , Humanos , Varíola/diagnóstico , Varíola/epidemiologia , Vacina Antivariólica , Fatores de Tempo , Vacinação/métodos
13.
Nat Commun ; 9(1): 4864, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451849

RESUMO

Many real-life optimization problems can be formulated in Boolean logic as MaxSAT, a class of problems where the task is finding Boolean assignments to variables satisfying the maximum number of logical constraints. Since MaxSAT is NP-hard, no algorithm is known to efficiently solve these problems. Here we present a continuous-time analog solver for MaxSAT and show that the scaling of the escape rate, an invariant of the solver's dynamics, can predict the maximum number of satisfiable constraints, often well before finding the optimal assignment. Simulating the solver, we illustrate its performance on MaxSAT competition problems, then apply it to two-color Ramsey number R(m, m) problems. Although it finds colorings without monochromatic 5-cliques of complete graphs on N ≤ 42 vertices, the best coloring for N = 43 has two monochromatic 5-cliques, supporting the conjecture that R(5, 5) = 43. This approach shows the potential of continuous-time analog dynamical systems as algorithms for discrete optimization.

14.
Neuron ; 97(3): 698-715.e10, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29420935

RESUMO

The inter-areal wiring pattern of the mouse cerebral cortex was analyzed in relation to a refined parcellation of cortical areas. Twenty-seven retrograde tracer injections were made in 19 areas of a 47-area parcellation of the mouse neocortex. Flat mounts of the cortex and multiple histological markers enabled detailed counts of labeled neurons in individual areas. The observed log-normal distribution of connection weights to each cortical area spans 5 orders of magnitude and reveals a distinct connectivity profile for each area, analogous to that observed in macaques. The cortical network has a density of 97%, considerably higher than the 66% density reported in macaques. A weighted graph analysis reveals a similar global efficiency but weaker spatial clustering compared with that reported in macaques. The consistency, precision of the connectivity profile, density, and weighted graph analysis of the present data differ significantly from those obtained in earlier studies in the mouse.


Assuntos
Conectoma/métodos , Modelos Neurológicos , Neocórtex/citologia , Animais , Feminino , Macaca , Masculino , Vias Neurais/citologia , Técnicas de Rastreamento Neuroanatômico , Especificidade da Espécie
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(3 Pt 2): 036105, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17500757

RESUMO

We consider the effect of network topology on the optimality of packet routing which is quantified by gammac, the rate of packet insertion beyond which congestion and queue growth occurs. We show that for any network, there exists an absolute upper bound, expressed in terms of vertex separators, for the scaling of gammac with network size N, irrespective of the static routing protocol used. We then derive an estimate to this upper bound for scale-free networks and introduce a static routing protocol, the "hub avoidance protocol," which, for large packet insertion rates, is superior to the shortest path routing protocol.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(4 Pt 2): 046114, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17155140

RESUMO

We present a study of transport on complex networks with routing based on local information. Particles hop from one node of the network to another according to a set of routing rules with different degrees of congestion awareness, ranging from random diffusion to rigid congestion-gradient driven flow. Each node can be either source or destination for particles and all nodes have the same routing capacity, which are features of ad hoc wireless networks. It is shown that the transport capacity increases when a small amount of congestion awareness is present in the routing rules, and that it then decreases as the routing rules become too rigid when the flow becomes strictly congestion-gradient driven. Therefore, an optimum value of the congestion awareness exists in the routing rules. It is also shown that, in the limit of a large number of nodes, networks using routing based on local information jam at any nonzero load. Finally, we study the correlation between congestion at node level and a betweenness centrality measure.

17.
Phys Rev E ; 93(5): 052211, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27300884

RESUMO

Transient chaos is a ubiquitous phenomenon characterizing the dynamics of phase-space trajectories evolving towards a steady-state attractor in physical systems as diverse as fluids, chemical reactions, and condensed matter systems. Here we show that transient chaos also appears in the dynamics of certain efficient algorithms searching for solutions of constraint satisfaction problems that include scheduling, circuit design, routing, database problems, and even Sudoku. In particular, we present a study of the emergence of hardness in Boolean satisfiability (k-SAT), a canonical class of constraint satisfaction problems, by using an analog deterministic algorithm based on a system of ordinary differential equations. Problem hardness is defined through the escape rate κ, an invariant measure of transient chaos of the dynamical system corresponding to the analog algorithm, and it expresses the rate at which the trajectory approaches a solution. We show that for a given density of constraints and fixed number of Boolean variables N, the hardness of formulas in random k-SAT ensembles has a wide variation, approximable by a lognormal distribution. We also show that when increasing the density of constraints α, hardness appears through a second-order phase transition at α_{χ} in the random 3-SAT ensemble where dynamical trajectories become transiently chaotic. A similar behavior is found in 4-SAT as well, however, such a transition does not occur for 2-SAT. This behavior also implies a novel type of transient chaos in which the escape rate has an exponential-algebraic dependence on the critical parameter κ∼N^{B|α-α_{χ}|^{1-γ}} with 0<γ<1. We demonstrate that the transition is generated by the appearance of metastable basins in the solution space as the density of constraints α is increased.

18.
Nat Commun ; 6: 8627, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26482121

RESUMO

Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks--the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain--and find that many important local and global structural properties of these networks are closely reproduced by dk-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate dk-random graphs.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(1 Pt 2): 016130, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11800759

RESUMO

The Horton-Strahler (HS) index r=max(i,j)+delta(i,j) has been shown to be relevant to a number of physical (such as diffusion limited aggregation) geological (river networks), biological (pulmonary arteries, blood vessels, various species of trees), and computational (use of registers) applications. Here we revisit the enumeration problem of the HS index on the rooted, unlabeled, plane binary set of trees, and enumerate the same index on the ambilateral set of rooted, plane binary set of trees of n leaves. The ambilateral set is a set of trees whose elements cannot be obtained from each other via an arbitrary number of reflections with respect to vertical axes passing through any of the nodes on the tree. For the unlabeled set we give an alternate derivation to the existing exact solution. Extending this technique for the ambilateral set, which is described by an infinite series of nonlinear functional equations, we are able to give a double exponentially converging approximant to the generating functions in a neighborhood of their convergence circle, and derive an explicit asymptotic form for the number of such trees.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(3 Pt 2): 036303, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12689161

RESUMO

It is known that small, spherical particles with inertia do not follow the local velocity field of the flow. Here we investigate the motion of such particles and particle ensembles immersed in open, unsteady flows which, in the case of ideal pointlike tracers, generate chaotic Lagrangian trajectories. Due to the extra force terms in the equations of motion (such as Stokes drag, added mass) the inertial tracer trajectories become described by a high-dimensional (2d+1, with d being the flow's dimension) chaotic dynamics, which can drastically differ from the (d+1)-dimensional ideal tracer dynamics. As a consequence, we find parameter regimes (in terms of density and size), where long-term tracer trapping can occur for the inertial particle, even for flows in which no ideal, pointlike passive tracers can be trapped. These studies are performed in a model of a two-dimensional channel flow past a cylindrical obstacle. Since the Lagrangian tracer dynamics is sensitive to the particle density and size parameters, a simple geometric setup in such flows could be used as a (low-density) particle mixture segregator.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa