Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Cell Mol Life Sci ; 80(11): 316, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801090

RESUMO

Nuclear deformability plays a critical role in cell migration. During this process, the remodeling of internal components of the nucleus has a direct impact on DNA damage and cell behavior; however, how persistent migration promotes nuclear changes leading to phenotypical and functional consequences remains poorly understood. Here, we described that the persistent migration through physical barriers was sufficient to promote permanent modifications in migratory-altered cells. We found that derived cells from confined migration showed changes in lamin B1 localization, cell morphology and transcription. Further analysis confirmed that migratory-altered cells showed functional differences in DNA repair, cell response to chemotherapy and cell migration in vivo homing experiments. Experimental modulation of actin polymerization affected the redistribution of lamin B1, and the basal levels of DNA damage in migratory-altered cells. Finally, since major nuclear changes were present in migratory-altered cells, we applied a multidisciplinary biochemical and biophysical approach to identify that confined conditions promoted a different biomechanical response of the nucleus in migratory-altered cells. Our observations suggest that mechanical compression during persistent cell migration has a role in stable nuclear and genomic alterations that might handle the genetic instability and cellular heterogeneity in aging diseases and cancer.


Assuntos
Leucemia , Neoplasias , Humanos , Estresse Mecânico , Movimento Celular , Reparo do DNA , Leucemia/genética , Núcleo Celular/fisiologia
3.
Nature ; 547(7661): 109-113, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28658205

RESUMO

Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation. Here we show that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. By using integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identify alterations in tumours affecting the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation is validated in mouse and human cancer specimens. AMD1 is upregulated in human prostate cancer with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibit a predominant decrease in AMD1 immunoreactivity that is associated with a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program.


Assuntos
Adenosilmetionina Descarboxilase/metabolismo , Complexos Multiproteicos/metabolismo , Poliaminas/metabolismo , Neoplasias da Próstata/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adenosilmetionina Descarboxilase/imunologia , Animais , Proliferação de Células , Ativação Enzimática , Everolimo/uso terapêutico , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Metabolômica , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Estabilidade Proteica , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores
4.
Bioinformatics ; 35(21): 4350-4355, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30923806

RESUMO

MOTIVATION: The development of computational tools exploiting -omics data and high-quality genome-scale metabolic networks for the identification of novel drug targets is a relevant topic in Systems Medicine. Metabolic Transformation Algorithm (MTA) is one of these tools, which aims to identify targets that transform a disease metabolic state back into a healthy state, with potential application in any disease where a clear metabolic alteration is observed. RESULTS: Here, we present a robust extension to MTA (rMTA), which additionally incorporates a worst-case scenario analysis and minimization of metabolic adjustment to evaluate the beneficial effect of gene knockouts. We show that rMTA complements MTA in the different datasets analyzed (gene knockout perturbations in different organisms, Alzheimer's disease and prostate cancer), bringing a more accurate tool for predicting therapeutic targets. AVAILABILITY AND IMPLEMENTATION: rMTA is freely available on The Cobra Toolbox: https://opencobra.github.io/cobratoolbox/latest/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes e Vias Metabólicas , Software , Algoritmos , Genoma , Análise de Sistemas
5.
Hepatology ; 67(4): 1420-1440, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28922472

RESUMO

Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease associated with autoimmune phenomena targeting intrahepatic bile duct cells (cholangiocytes). Although its etiopathogenesis remains obscure, development of antimitochondrial autoantibodies against pyruvate dehydrogenase complex E2 is a common feature. MicroRNA (miR) dysregulation occurs in liver and immune cells of PBC patients, but its functional relevance is largely unknown. We previously reported that miR-506 is overexpressed in PBC cholangiocytes and directly targets both Cl- / HCO3- anion exchanger 2 and type III inositol 1,4,5-trisphosphate receptor, leading to cholestasis. Here, the regulation of miR-506 gene expression and its role in cholangiocyte pathophysiology and immune activation was studied. Several proinflammatory cytokines overexpressed in PBC livers (such as interleukin-8 [IL8], IL12, IL17, IL18, and tumor necrosis factor alpha) stimulated miR-506 promoter activity in human cholangiocytes, as revealed by luciferase reporter assays. Experimental overexpression of miR-506 in cholangiocytes dysregulated the cell proteomic profile (by mass spectrometry), affecting proteins involved in different biological processes including mitochondrial metabolism. In cholangiocytes, miR-506 (1) induced dedifferentiation with down-regulation of biliary and epithelial markers together with up-regulation of mesenchymal, proinflammatory, and profibrotic markers; (2) impaired cell proliferation and adhesion; (3) increased oxidative and endoplasmic reticulum stress; (4) caused DNA damage; and (5) sensitized to caspase-3-dependent apoptosis induced by cytotoxic bile acids. These events were also associated with impaired energy metabolism in mitochondria (proton leak and less adenosine triphosphate production) and pyruvate dehydrogenase complex E2 overexpression. Coculture of miR-506 overexpressing cholangiocytes with PBC immunocytes induced activation and proliferation of PBC immunocytes. CONCLUSION: Different proinflammatory cytokines enhance the expression of miR-506 in biliary epithelial cells; miR-506 induces PBC-like features in cholangiocytes and promotes immune activation, representing a potential therapeutic target for PBC patients. (Hepatology 2018;67:1420-1440).


Assuntos
Ductos Biliares Intra-Hepáticos/patologia , Células Epiteliais/metabolismo , Cirrose Hepática Biliar/metabolismo , MicroRNAs/metabolismo , Apoptose , Ductos Biliares Intra-Hepáticos/metabolismo , Técnicas de Cultura de Células , Ensaios de Migração Celular , Proliferação de Células , Citocinas/metabolismo , Imunofluorescência , Regulação da Expressão Gênica/genética , Humanos , Immunoblotting , Espectrometria de Massas , Estresse Oxidativo , Proteômica , Transdução de Sinais/genética
6.
Blood ; 118(18): 4910-8, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21900195

RESUMO

ETV6-RUNX1 gene fusion is usually an early, prenatal event in childhood acute lymphoblastic leukemia (ALL). Transformation results in the generation of a persistent (> 14 years) preleukemic clone, which postnatally converts to ALL after the acquisition of necessary secondary genetic alterations. Many cancer cells show some expression of the erythropoietin receptor (EPOR) gene, although the "functionality" of any EPOR complexes and their relevant signaling pathways in nonerythroid cells has not been validated. EPOR mRNA is selectively and ectopically expressed in ETV6-RUNX1(+) ALL, but the presence of a functional EPOR on the cell surface and its role in leukemogenesis driven by ETV6-RUNX1 remains to be identified. Here, we show that ETV6-RUNX1 directly binds the EPOR promoter and that expression of ETV6-RUNX1 alone in normal pre-B cells is sufficient to activate EPOR transcription. We further reveal that murine and human ETV6-RUNX1(+) cells expressing EPOR mRNA have EPO ligand binding activity that correlates with an increased cell survival through activation of the JAK2-STAT5 pathway and up-regulation of antiapoptotic BCL-XL. These data support the contention that ETV6-RUNX1 directly activates ectopic expression of a functional EPOR and provides cell survival signals that may contribute critically to persistence of covert premalignant clones in children.


Assuntos
Proteínas de Fusão Oncogênica/fisiologia , Células Precursoras de Linfócitos B/fisiologia , Receptores da Eritropoetina/fisiologia , Animais , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Sobrevivência Celular/genética , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core , Modelos Animais de Doenças , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo
7.
Oncogenesis ; 11(1): 10, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197445

RESUMO

Glycine N-Methyltransferase (GNMT) is a metabolic enzyme that integrates metabolism and epigenetic regulation. The product of GNMT, sarcosine, has been proposed as a prostate cancer biomarker. This enzyme is predominantly expressed in the liver, brain, pancreas, and prostate tissue, where it exhibits distinct regulation. Whereas genetic alterations in GNMT have been associated to prostate cancer risk, its causal contribution to the development of this disease is limited to cell line-based studies and correlative human analyses. Here we integrate human studies, genetic mouse modeling, and cellular systems to characterize the regulation and function of GNMT in prostate cancer. We report that this enzyme is repressed upon activation of the oncogenic Phosphoinositide-3-kinase (PI3K) pathway, which adds complexity to its reported dependency on androgen signaling. Importantly, we demonstrate that expression of GNMT is required for the onset of invasive prostate cancer in a genetic mouse model. Altogether, our results provide further support of the heavy oncogenic signal-dependent regulation of GNMT in prostate cancer.

8.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34503116

RESUMO

Prostate cancer (PCa) is one of the most prevalent cancers in men. Androgen receptor signaling plays a major role in this disease, and androgen deprivation therapy is a common therapeutic strategy in recurrent disease. Sphingolipid metabolism plays a central role in cell death, survival, and therapy resistance in cancer. Ceramide kinase (CERK) catalyzes the phosphorylation of ceramide to ceramide 1-phosphate, which regulates various cellular functions including cell growth and migration. Here we show that activated androgen receptor (AR) is a repressor of CERK expression. We undertook a bioinformatics strategy using PCa transcriptomics datasets to ascertain the metabolic alterations associated with AR activity. CERK was among the most prominent negatively correlated genes in our analysis. Interestingly, we demonstrated through various experimental approaches that activated AR reduces the mRNA expression of CERK: (i) expression of CERK is predominant in cell lines with low or negative AR activity; (ii) AR agonist and antagonist repress and induce CERK mRNA expression, respectively; (iii) orchiectomy in wildtype mice or mice with PCa (harboring prostate-specific Pten deletion) results in elevated Cerk mRNA levels in prostate tissue. Mechanistically, we found that AR represses CERK through interaction with its regulatory elements and that the transcriptional repressor EZH2 contributes to this process. In summary, we identify a repressive mode of AR that influences the expression of CERK in PCa.

9.
Cell Death Differ ; 27(4): 1186-1199, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31570853

RESUMO

Oncogene addiction postulates that the survival and growth of certain tumor cells is dependent upon the activity of one oncogene, despite their multiple genetic and epigenetic abnormalities. This phenomenon provides a foundation for molecular targeted therapy and a rationale for oncogene-based stratification. We have previously reported that the Promyelocytic Leukemia protein (PML) is upregulated in triple negative breast cancer (TNBC) and it regulates cancer-initiating cell function, thus suggesting that this protein can be therapeutically targeted in combination with PML-based stratification. However, the effects of PML perturbation on the bulk of tumor cells remained poorly understood. Here we demonstrate that TNBC cells are addicted to the expression of this nuclear protein. PML inhibition led to a remarkable growth arrest combined with features of senescence in vitro and in vivo. Mechanistically, the growth arrest and senescence were associated to a decrease in MYC and PIM1 kinase levels, with the subsequent accumulation of CDKN1B (p27), a trigger of senescence. In line with this notion, we found that PML is associated to the promoter regions of MYC and PIM1, consistent with their direct correlation in breast cancer specimens. Altogether, our results provide a feasible explanation for the functional similarities of MYC, PIM1, and PML in TNBC and encourage further study of PML targeting strategies for the treatment of this breast cancer subtype.


Assuntos
Senescência Celular , Proteína da Leucemia Promielocítica/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inativação Gênica , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
10.
Cancers (Basel) ; 12(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932846

RESUMO

Prostate cancer is the most frequent malignancy in European men and the second worldwide. One of the major oncogenic events in this disease includes amplification of the transcription factor cMYC. Amplification of this oncogene in chromosome 8q24 occurs concomitantly with the copy number increase in a subset of neighboring genes and regulatory elements, but their contribution to disease pathogenesis is poorly understood. Here we show that TRIB1 is among the most robustly upregulated coding genes within the 8q24 amplicon in prostate cancer. Moreover, we demonstrate that TRIB1 amplification and overexpression are frequent in this tumor type. Importantly, we find that, parallel to its amplification, TRIB1 transcription is controlled by cMYC. Mouse modeling and functional analysis revealed that aberrant TRIB1 expression is causal to prostate cancer pathogenesis. In sum, we provide unprecedented evidence for the regulation and function of TRIB1 in prostate cancer.

11.
J Clin Invest ; 130(5): 2435-2450, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32250342

RESUMO

The mechanisms by which prostate cancer shifts from an indolent castration-sensitive phenotype to lethal castration-resistant prostate cancer (CRPC) are poorly understood. Identification of clinically relevant genetic alterations leading to CRPC may reveal potential vulnerabilities for cancer therapy. Here we find that CUB domain-containing protein 1 (CDCP1), a transmembrane protein that acts as a substrate for SRC family kinases (SFKs), is overexpressed in a subset of CRPC. Notably, CDCP1 cooperates with the loss of the tumor suppressor gene PTEN to promote the emergence of metastatic prostate cancer. Mechanistically, we find that androgens suppress CDCP1 expression and that androgen deprivation in combination with loss of PTEN promotes the upregulation of CDCP1 and the subsequent activation of the SRC/MAPK pathway. Moreover, we demonstrate that anti-CDCP1 immunoliposomes (anti-CDCP1 ILs) loaded with chemotherapy suppress prostate cancer growth when administered in combination with enzalutamide. Thus, our study identifies CDCP1 as a powerful driver of prostate cancer progression and uncovers different potential therapeutic strategies for the treatment of metastatic prostate tumors.


Assuntos
Antígenos de Neoplasias/biossíntese , Moléculas de Adesão Celular/biossíntese , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Neoplasias da Próstata/metabolismo , Regulação para Cima , Animais , Antígenos de Neoplasias/genética , Benzamidas , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Drosophila melanogaster , Humanos , Lipossomos , Masculino , Nitrilas , PTEN Fosfo-Hidrolase/biossíntese , PTEN Fosfo-Hidrolase/genética , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
12.
J Exp Med ; 217(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32219437

RESUMO

Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkb1 alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1K78I, was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination.


Assuntos
Neoplasias da Próstata/enzimologia , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Linhagem Celular Tumoral , Progressão da Doença , Epitélio/enzimologia , Epitélio/patologia , Células HEK293 , Heterozigoto , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteínas Mutantes/metabolismo , Metástase Neoplásica , PTEN Fosfo-Hidrolase/metabolismo , Próstata/enzimologia , Próstata/patologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo
13.
Cancer Res ; 79(24): 6153-6165, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31594836

RESUMO

The PPARγ coactivator 1 alpha (PGC1α) is a prostate tumor suppressor that controls the balance between anabolism and catabolism. PGC1A downregulation in prostate cancer is causally associated with the development of metastasis. Here we show that the transcriptional complex formed by PGC1α and estrogen-related receptor 1 alpha (ERRα) controls the aggressive properties of prostate cancer cells. PGC1α expression significantly decreased migration and invasion of various prostate cancer cell lines. This phenotype was consistent with remarkable cytoskeletal remodeling and inhibition of integrin alpha 1 and beta 4 expression, both in vitro and in vivo. CRISPR/Cas9-based deletion of ERRα suppressed PGC1α regulation of cytoskeletal organization and invasiveness. Mechanistically, PGC1α expression decreased MYC levels and activity prior to inhibition of invasiveness. In addition, PGC1α and ERRα associated at the MYC promoter, supporting the inhibitory activity PGC1α. The inverse correlation between PGC1α-ERRα activity and MYC levels was corroborated in multiple prostate cancer datasets. Altogether, these results support that PGC1α-ERRα functions as a tumor-suppressive transcriptional complex through the regulation of metabolic and signaling events. SIGNIFICANCE: These findings describe how downregulation of the prostate tumor suppressor PGC1 drives invasiveness and migration of prostate cancer cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/genética , Receptores de Estrogênio/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Conjuntos de Dados como Assunto , Humanos , Masculino , Invasividade Neoplásica/genética , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/patologia , Transdução de Sinais/genética , Transcrição Gênica , Receptor ERRalfa Relacionado ao Estrogênio
14.
J Extracell Vesicles ; 7(1): 1470442, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760869

RESUMO

Urine contains extracellular vesicles (EVs) that concentrate molecules and protect them from degradation. Thus, isolation and characterisation of urinary EVs could increase the efficiency of biomarker discovery. We have previously identified proteins and RNAs with differential abundance in urinary EVs from prostate cancer (PCa) patients compared to benign prostate hyperplasia (BPH). Here, we focused on the analysis of the metabolites contained in urinary EVs collected from patients with PCa and BPH. Targeted metabolomics analysis of EVs was performed by ultra-high-performance liquid chromatography-mass spectrometry. The correlation between metabolites and clinical parameters was studied, and metabolites with differential abundance in PCa urinary EVs were detected and mapped into cellular pathways. We detected 248 metabolites belonging to different chemical families including amino acids and various lipid species. Among these metabolites, 76 exhibited significant differential abundance between PCa and BPH. Interestingly, urine EVs recapitulated many of the metabolic alterations reported in PCa, including phosphathidylcholines, acyl carnitines, citrate and kynurenine. Importantly, we found elevated levels of the steroid hormone, 3beta-hydroxyandros-5-en-17-one-3-sulphate (dehydroepiandrosterone sulphate) in PCa urinary EVs, in line with the potential elevation of androgen synthesis in this type of cancer. This work supports urinary EVs as a non-invasive source to infer metabolic changes in PCa.

15.
Cancer Res ; 78(21): 6320-6328, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232219

RESUMO

With the advent of OMICs technologies, both individual research groups and consortia have spear-headed the characterization of human samples of multiple pathophysiologic origins, resulting in thousands of archived genomes and transcriptomes. Although a variety of web tools are now available to extract information from OMICs data, their utility has been limited by the capacity of nonbioinformatician researchers to exploit the information. To address this problem, we have developed CANCERTOOL, a web-based interface that aims to overcome the major limitations of public transcriptomics dataset analysis for highly prevalent types of cancer (breast, prostate, lung, and colorectal). CANCERTOOL provides rapid and comprehensive visualization of gene expression data for the gene(s) of interest in well-annotated cancer datasets. This visualization is accompanied by generation of reports customized to the interest of the researcher (e.g., editable figures, detailed statistical analyses, and access to raw data for reanalysis). It also carries out gene-to-gene correlations in multiple datasets at the same time or using preset patient groups. Finally, this new tool solves the time-consuming task of performing functional enrichment analysis with gene sets of interest using up to 11 different databases at the same time. Collectively, CANCERTOOL represents a simple and freely accessible interface to interrogate well-annotated datasets and obtain publishable representations that can contribute to refinement and guidance of cancer-related investigations at all levels of hypotheses and design.Significance: In order to facilitate access of research groups without bioinformatics support to public transcriptomics data, we have developed a free online tool with an easy-to-use interface that allows researchers to obtain quality information in a readily publishable format. Cancer Res; 78(21); 6320-8. ©2018 AACR.


Assuntos
Biologia Computacional/métodos , Neoplasias/genética , Algoritmos , Gráficos por Computador , Bases de Dados Factuais , Bases de Dados Genéticas , Genômica , Humanos , Internet , Oncologia , Proteômica , Software , Transcriptoma , Interface Usuário-Computador , Fluxo de Trabalho
16.
Cell Death Dis ; 9(10): 1041, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310055

RESUMO

The dysregulation of gene expression is an enabling hallmark of cancer. Computational analysis of transcriptomics data from human cancer specimens, complemented with exhaustive clinical annotation, provides an opportunity to identify core regulators of the tumorigenic process. Here we exploit well-annotated clinical datasets of prostate cancer for the discovery of transcriptional regulators relevant to prostate cancer. Following this rationale, we identify Microphthalmia-associated transcription factor (MITF) as a prostate tumor suppressor among a subset of transcription factors. Importantly, we further interrogate transcriptomics and clinical data to refine MITF perturbation-based empirical assays and unveil Crystallin Alpha B (CRYAB) as an unprecedented direct target of the transcription factor that is, at least in part, responsible for its tumor-suppressive activity in prostate cancer. This evidence was supported by the enhanced prognostic potential of a signature based on the concomitant alteration of MITF and CRYAB in prostate cancer patients. In sum, our study provides proof-of-concept evidence of the potential of the bioinformatics screen of publicly available cancer patient databases as discovery platforms, and demonstrates that the MITF-CRYAB axis controls prostate cancer biology.


Assuntos
Fator de Transcrição Associado à Microftalmia/genética , Neoplasias da Próstata/genética , Transcriptoma/genética , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Células PC-3 , Prognóstico , Neoplasias da Próstata/patologia , Fatores de Transcrição/genética , Cadeia B de alfa-Cristalina/genética
17.
Oncotarget ; 9(2): 1494-1504, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29416709

RESUMO

Prostate cancer is diagnosed late in life, when co-morbidities are frequent. Among them, hypertension, hypercholesterolemia, diabetes or metabolic syndrome exhibit an elevated incidence. In turn, prostate cancer patients frequently undergo chronic pharmacological treatments that could alter disease initiation, progression and therapy response. Here we show that treatment with anti-cholesterolemic drugs, statins, at doses achieved in patients, enhance the pro-tumorigenic activity of obesogenic diets. In addition, the use of a mouse model of prostate cancer and human prostate cancer xenografts revealed that in vivo simvastatin administration alone increases prostate cancer aggressiveness. In vitro cell line systems supported the notion that this phenomenon occurs, at least in part, through the direct action on cancer cells of low doses of statins, in range of what is observed in human plasma. In sum, our results reveal a prostate cancer experimental system where statins exhibit an undesirable effect, and warrant further research to address the relevance and implications of this observation in human prostate cancer.

18.
Cancer Res ; 78(2): 399-409, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187400

RESUMO

The nuclear receptor PPAR-ß/δ (PPARD) has essential roles in fatty acid catabolism and energy homeostasis as well as cell differentiation, inflammation, and metabolism. However, its contributions to tumorigenesis are uncertain and have been disputed. Here, we provide evidence of tumor suppressive activity of PPARD in prostate cancer through a noncanonical and ligand-independent pathway. PPARD was downregulated in prostate cancer specimens. In murine prostate epithelium, PPARD gene deletion resulted in increased cellularity. Genetic modulation of PPARD in human prostate cancer cell lines validated the tumor suppressive activity of this gene in vitro and in vivo Mechanistically, PPARD exerted its activity in a DNA binding-dependent and ligand-independent manner. We identified a novel set of genes repressed by PPARD that failed to respond to ligand-mediated activation. Among these genes, we observed robust regulation of the secretory trefoil factor family (TFF) members, including a causal and correlative association of TFF1 with prostate cancer biology in vitro and in patient specimens. Overall, our results illuminate the oncosuppressive function of PPARD and understanding of the pathogenic molecular pathways elicited by this nuclear receptor.Significance: These findings challenge the presumption that the function of the nuclear receptor PPARß/δ in cancer is dictated by ligand-mediated activation. Cancer Res; 78(2); 399-409. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , PPAR delta/metabolismo , Neoplasias da Próstata/patologia , Fator Trefoil-1/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Regulação para Baixo , Seguimentos , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , PPAR delta/genética , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fator Trefoil-1/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Clin Cancer Res ; 12(20 Pt 1): 5978-86, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17062669

RESUMO

PURPOSE: Brother of the regulator of imprinted sites (BORIS) is a novel member of the cancer-testis antigen gene family. These genes are normally expressed only in spermatocytes but abnormally activated in different malignancies, including breast cancer. The aim of this study was to investigate the expression of BORIS in the leukocytes of breast cancer patients and the correlation between BORIS levels and clinical/pathologic variables. EXPERIMENTAL DESIGN: Leukocytes were obtained from whole blood of 87 breast cancer patients and 52 donors not diagnosed with cancer. BORIS protein was detected in leukocytes by immunohistochemical staining; the immunoreactivity score (IRS) of each sample was determined. Additionally, BORIS expression was assessed by Western blot analysis and real-time reverse transcription-PCR. RESULTS: We describe significantly high levels of BORIS (IRS = 4.25 +/- 0.034) in a subpopulation of leukocytes, the neutrophil polymorphonuclear granulocytes, in 88.5% of breast cancer patients. Increased IRS for BORIS in these patients correlated with increased tumor size. In comparison, 19.2% samples from the control group were BORIS positive with only very low levels of BORIS (IRS = 0.25 +/- 0.009). CONCLUSION: We report here the novel finding of BORIS expression in polymorphonuclear granulocytes of breast cancer patients. This tumor-related occurrence is a phenomenon not observed in donors with injuries and immune and inflammatory diseases. Detection of BORIS in a high proportion of patients with various types of breast tumors indicates that BORIS can be a valuable early blood marker of breast cancer. We conclude that BORIS represents a new class of cancer biomarkers different from those currently used in medical practice.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama Masculina/sangue , Neoplasias da Mama/sangue , Proteínas de Ligação a DNA/sangue , Leucócitos/química , Adulto , Idoso , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama Masculina/diagnóstico , Neoplasias da Mama Masculina/patologia , Feminino , Humanos , Doenças do Sistema Imunitário/sangue , Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Valores de Referência
20.
Cell Metab ; 25(5): 997-999, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467946

RESUMO

Biological features acquired or lost during the tumorigenic process are a source for the discovery of molecular cues relevant to cancer. The latest study led by the Weinberg lab (Keckesova et al., 2017) focuses on the transcriptional program underlying quiescence to uncover a novel metabolic tumor suppressor, LACTB.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , beta-Lactamases/metabolismo , Animais , Carboxiliases/metabolismo , Divisão Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa