Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nicotine Tob Res ; 25(5): 1022-1029, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36426873

RESUMO

INTRODUCTION: Nicotine and cannabis are commonly used together, yet few studies have investigated the effects of concurrent administration. Nicotine exhibits reinforcement enhancing effects by promoting the reinforcing properties of stimuli including other drugs. As many studies of this effect used non-contingent nicotine, we implemented a dual-self-administration model where rats have simultaneous access to two drugs and choose which to self-administer throughout a session. Here, we investigated the effect of self-administered or non-contingently delivered nicotine on cannabinoid self-administration. METHODS: Adult male rats were allowed to self-administer the synthetic cannabinoid WIN 55,212-2 (WIN) intravenously, with or without subcutaneous nicotine injections before each session. A separate group of animals were allowed to self-administer WIN, nicotine, or saline using a dual-catheter procedure, where each solution was infused independently and associated with a separate operant response. A third group of male and female rats were allowed to self-administer delta-9-tetrahydrocannabinol (THC) with or without pre-session injections of nicotine. RESULTS: Nicotine injections increased self-administration of WIN and THC. During dual self-administration, nicotine availability increased saline and WIN infusions but nicotine intake was not changed by WIN or saline availability. Rats preferred nicotine over saline, but preferred nicotine and WIN equally when both were available. The effect of nicotine on cannabinoid self-administration was acute and reversible when nicotine was no longer present. CONCLUSIONS: These results expand our understanding of the ability of nicotine to enhance reinforcement of other drugs and suggest that co-use of nicotine and cannabinoids promotes cannabinoid use beyond what would be taken alone. IMPLICATIONS: This study utilizes a dual intravenous self-administration model to investigate the ability of nicotine to enhance cannabinoid intake. Our results demonstrate that the reinforcement enhancing properties of nicotine on drug use extend to include cannabinoids, but that this effect occurs specifically when nicotine is administered alongside the cannabinoid. Interestingly, cannabinoid use did not promote nicotine intake, suggesting this mechanism of reinforcement is specific to nicotine.


Assuntos
Canabinoides , Ratos , Masculino , Feminino , Animais , Nicotina , Condicionamento Operante , Reforço Psicológico , Autoadministração , Relação Dose-Resposta a Droga
2.
J Neurosci ; 40(6): 1344-1354, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31862855

RESUMO

Interfering with memory reconsolidation or inducing memory extinction are two approaches for weakening maladaptive memories in disorders such as addiction and post-traumatic stress disorder. Both extinction and reconsolidation are regulated by intracellular protein kinases and phosphatases, and interfering with these signaling molecules can alter memory strength. The calcium-dependent protein phosphatase, calcineurin (CaN), has been implicated in both the consolidation and extinction of fear memories. However, the role of CaN in regulating drug-cue associative memories has not been investigated. Prior studies have demonstrated that plasticity at thalamo-lateral amygdala (T-LA) synapses is critically involved in the regulation of cocaine-cue memories. Therefore, in the present study, we tested the effects of LA administration of an activator of CaN, chlorogenic acid (CGA), on behavioral and electrophysiological indices of cocaine cue memory reconsolidation and extinction. Male, Sprague-Dawley rats were trained to self-administer cocaine paired with an audiovisual cue. The cue memory was then either briefly reactivated, extinguished, or not manipulated, followed immediately by LA infusion of CGA. Rats were tested 24 h later for cue-induced reinstatement, or LA slices were prepared for electrophysiological recordings. We found that intra-LA infusions of CGA following cue extinction or reconsolidation reduced cue-induced reinstatement, which was blocked by co-infusion of the CaN inhibitor, FK-506. Similarly, CGA infusions following cue re-exposure significantly attenuated EPSC amplitude at T-LA synapses, suggesting that CaN affects cocaine-cue memory reconsolidation and extinction by altering T-LA synaptic strength. Therefore, CaN signaling in the LA may represent a novel target for disrupting cocaine-associated memories to reduce relapse.SIGNIFICANCE STATEMENT Repetitive drug use induces synaptic plasticity that underlies the formation of long-lasting associative memories for environmental cues paired with the drug. We previously identified thalamo-amygdala synapses (T-LA) that project via the interal capsule, as an important locus for the regulation of cocaine-cue memories. These synapses are strengthened by repeated cocaine-cue pairings, but this is reversed by extinction training or by optogenetic induction of in vivo long-term depression (LTD). Here, we demonstrate that activating calcineurin, a calcium-dependent phosphatase, following the reactivation or extinction of a cocaine-cue memory, induces LTD-like changes at T-LA synapses, and a corresponding decrease in cue-induced reinstatement, suggesting that calcineurin may be a potential therapeutic target for relapse prevention.


Assuntos
Tonsila do Cerebelo/fisiologia , Calcineurina/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Sinais (Psicologia) , Masculino , Ratos , Ratos Sprague-Dawley
3.
Cell Mol Life Sci ; 77(19): 3745-3768, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32172301

RESUMO

Risk of relapse is a major challenge in the treatment of substance use disorders. Several types of learning and memory mechanisms are involved in substance use and have implications for relapse. Associative memories form between the effects of drugs and the surrounding environmental stimuli, and exposure to these stimuli during abstinence causes stress and triggers drug craving, which can lead to relapse. Understanding the neural underpinnings of how these associations are formed and maintained will inform future advances in treatment practices. A large body of research has expanded our knowledge of how associative memories are acquired and consolidated, how they are updated through reactivation and reconsolidation, and how competing extinction memories are formed. This review will focus on the vast literature examining the mechanisms of cocaine Pavlovian associative memories with an emphasis on the molecular memory mechanisms and circuits involved in the consolidation, reconsolidation, and extinction of these memories. Additional research elucidating the specific signaling pathways, mechanisms of synaptic plasticity, and epigenetic regulation of gene expression in the circuits involved in associative learning will reveal more distinctions between consolidation, reconsolidation, and extinction learning that can be applied to the treatment of substance use disorders.


Assuntos
Cocaína/farmacologia , Memória/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/patologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Interocepção/efeitos dos fármacos , Memória/fisiologia , Transtornos Relacionados ao Uso de Substâncias/metabolismo
4.
J Neurosci ; 36(29): 7613-27, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27445140

RESUMO

UNLABELLED: Successful addiction treatment depends on maintaining long-term abstinence, making relapse prevention an essential therapeutic goal. However, exposure to environmental cues associated with drug use often thwarts abstinence efforts by triggering drug using memories that drive craving and relapse. We sought to develop a dual approach for weakening cocaine memories through phosphoproteomic identification of targets regulated in opposite directions by memory extinction compared with reconsolidation in male Sprague-Dawley rats that had been trained to self-administer cocaine paired with an audiovisual cue. We discovered a novel, inversely regulated, memory-dependent phosphorylation event on calcium-calmodulin-dependent kinase II α (CaMKIIα) at serine (S)331. Correspondingly, extinction-associated S331 phosphorylation inhibited CaMKIIα activity. Intra-basolateral amygdala inhibition of CaMKII promoted memory extinction and disrupted reconsolidation, leading to a reduction in subsequent cue-induced reinstatement. CaMKII inhibition had no effect if the memory was neither retrieved nor extinguished. Therefore, inhibition of CaMKII represents a novel mechanism for memory-based addiction treatment that leverages both extinction enhancement and reconsolidation disruption to reduce relapse-like behavior. SIGNIFICANCE STATEMENT: Preventing relapse to drug use is an important goal for the successful treatment of addictive disorders. Relapse-prevention therapies attempt to interfere with drug-associated memories, but are often hindered by unintentional memory strengthening. In this study, we identify phosphorylation events that are bidirectionally regulated by the reconsolidation versus extinction of a cocaine-associated memory, including a novel site on CaMKIIα. Additionally, using a rodent model of addiction, we show that CaMKII inhibition in the amygdala can reduce relapse-like behavior. Together, our data supports the existence of mechanisms that can be used to enhance current strategies for addiction treatment.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Memória/efeitos dos fármacos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Sinais (Psicologia) , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Proteômica , Ratos , Ratos Sprague-Dawley , Autoadministração , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
5.
Handb Exp Pharmacol ; 228: 381-415, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977090

RESUMO

Many psychiatric disorders are characterized by intrusive, distracting, and disturbing memories that either perpetuate the illness or hinder successful treatment. For example, posttraumatic stress disorder (PTSD) involves such strong reemergence of memories associated with a traumatic event that the individual feels like the event is happening again. Furthermore, drug addiction is characterized by compulsive use and repeated relapse that is often driven by internal memories of drug use and/or by exposure to external stimuli that were associated with drug use. Therefore, identifying pharmacological methods to weaken the strength of maladaptive memories is a major goal of research efforts aimed at finding new treatments for these disorders. The primary mechanism by which memories could be pharmacologically disrupted or altered is through manipulation of memory reconsolidation. Reconsolidation occurs when an established memory is remembered or reactivated, reentering a labile state before again being consolidated into long-term memory storage. Memories are subject to disruption during this labile state. In this chapter we will discuss the preclinical and clinical studies identifying potential pharmacological methods for disrupting the integrity of maladaptive memory to treat mental illness.


Assuntos
Encéfalo/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/uso terapêutico , Memória/efeitos dos fármacos , Transtornos Mentais/tratamento farmacológico , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Humanos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Transtornos da Memória/psicologia , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Transdução de Sinais/efeitos dos fármacos , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/psicologia
6.
J Neurosci ; 33(19): 8370-7, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23658176

RESUMO

One strategy proposed to treat addictive disorders is to extinguish the association between environmental stimuli (cues) and actions associated with drug use to reduce relapse. The context specificity of extinction learning, however, impairs the ability of addicts to generalize extinction training to the drug-taking context. We previously reported that the NMDA receptor partial agonist d-cycloserine administered after pavlovian extinction of cocaine cues in the nucleus accumbens core (NAc) reduced cue-induced renewal. Nevertheless, it was unclear whether this was due to disrupted contextual encoding of extinction or enhanced extinction consolidation. Thus, we examined the effect of the NMDA receptor antagonist d-AP5 on context encoding versus cue extinction learning. We also determined the role of the anterior cingulate cortex (ACC) in encoding the cue extinction memory or the context, due to its projections to NAc, and hypothesized the role in conflict monitoring and contextual modulation of decision making. Using rats, we observed that NMDA receptor antagonism in the NAc did not alter context encoding but did interfere with acquisition of the cue extinction memory, i.e., learning, conversely inactivation of the ACC reduced the contextual encoding of extinction but did not interfere with the acquisition or expression of extinction. The observed effects were not present in the absence of cue extinction training. Additionally, the contextual memory did not appear to be consolidated in the ACC as neither postsession inactivation nor protein synthesis inhibition impaired context-appropriate responding. These results have implications for overcoming the context specificity of extinction to treat psychiatric disorders including addiction.


Assuntos
Cocaína/administração & dosagem , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , Inibidores da Captação de Dopamina/administração & dosagem , Extinção Psicológica/fisiologia , Giro do Cíngulo/fisiologia , Núcleo Accumbens/fisiologia , Análise de Variância , Animais , Baclofeno/farmacologia , Condicionamento Clássico/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Agonistas de Receptores de GABA-A , Giro do Cíngulo/efeitos dos fármacos , Masculino , Muscimol/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Esquema de Reforço , Autoadministração , Valina/análogos & derivados , Valina/farmacologia
7.
Eur J Neurosci ; 39(6): 999-1008, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24772465

RESUMO

Factors underlying individual vulnerability to develop alcoholism are largely unknown. In humans, the risk for alcoholism is associated with elevated cue reactivity. Recent evidence suggests that in animal models, reactivity to reward-paired cues is predictive of addictive behaviors. To model cue reactivity in mice, we used a Pavlovian approach (PA) paradigm in which mice were trained to associate a cue with delivery of a food reinforcer. We then investigated the relationship between PA status with habitual and compulsive-like ethanol seeking. After training mice to respond for 10% ethanol, habitual behavior was investigated using both an outcome devaluation paradigm, in which ethanol was devalued via association with lithium chloride-induced malaise, and a contingency degradation paradigm in which the relationship between action and outcome was disrupted. Compulsive-like behavior was investigated in a modified conditioned place preference paradigm in which footshock was paired with the reward-paired chamber. PA was found to be predictive of habitual and compulsive-like ethanol seeking. Additionally, innate risk status was related to epigenetic changes in the gene encoding the requisite subunit of the 5HT3 receptor, Htr3a, as well as 5HT3A protein expression in the amygdala. We then used pharmacological tools to demonstrate that risk status determines the ability of a 5HT3 antagonist to reduce compulsive ethanol seeking. These data indicate that risk status can be identified prior to any alcohol exposure by assessment of cue reactivity, and further that this endophenotype may be predictive of response to pharmacological treatment for components of alcoholism.


Assuntos
Comportamento Aditivo , Comportamento de Procura de Droga , Epigênese Genética , Receptores 5-HT3 de Serotonina/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Clássico , Etanol/farmacologia , Masculino , Camundongos , Receptores 5-HT3 de Serotonina/genética , Recompensa
8.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853853

RESUMO

Background: Cognitive deficits reflecting impaired executive function are commonly associated with psychiatric disorders, including substance use. Cognitive training is proposed to improve treatment outcomes for these disorders by promoting neuroplasticity within the prefrontal cortex, enhancing executive control, and mitigating cognitive decline due to drug use. Additionally, brain derived neurotrophic factor (BDNF) can facilitate plasticity in the prefrontal cortex and reduce drug-seeking behaviors. We investigated whether working memory training could elevate BDNF levels in the prefrontal cortex and if this training would predict or protect against cocaine or cannabinoid seeking. Methods: Adult male rats were trained to perform a 'simple' or 'complex' version of a delayed- match-to-sample working memory task. Rats then self-administered cocaine or the synthetic cannabinoid WIN55,212-2 and were tested for cued drug-seeking during abstinence. Tissue from the prefrontal cortex and dorsal hippocampus was analyzed for BDNF protein expression. Results: Training on the working memory task enhanced endogenous BDNF protein levels in the prelimbic prefrontal cortex but not the dorsal hippocampus. Working memory training did not impact self-administration of either drug but predicted the extent of WIN self-administration and cocaine seeking during abstinence. Conclusions: These results suggest that working memory training promotes endogenous BDNF but does not alter drug-seeking or drug-taking behavior. However, individual differences in cognitive performance prior to drug exposure may predict vulnerability to future drug use.

9.
Addict Neurosci ; 112024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38957402

RESUMO

A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking that is goal-directed but not habit-like. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry in rats trained to self-administer cocaine paired with an audiovisual cue to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habit-like cue-induced cocaine seeking and how it is impacted by cue extinction. After minimal fixed-ratio training, rats showed enhanced DMS and DLS calcium responses to cue-reinforced compared to unreinforced lever presses. After rats were trained on goal-promoting fixed ratio schedules or habit-promoting second-order schedules of reinforcement, different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses emerged. Rats trained on habit-promoting second-order schedules showed reduced DMS calcium responses and enhanced DLS dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habit-like behavior and the DLS are unaffected.

10.
Neuropharmacology ; 230: 109490, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889433

RESUMO

Intermittent access (IntA) models of cocaine self-administration were developed to better model in rodents how cocaine is used by human drug users. Compared to traditional continuous access (ContA) models, IntA has been shown to enhance several pharmacological and behavioral effects of cocaine, but few studies have examined sex differences in IntA. Moreover, no one has examined the efficacy of cue extinction to reduce cocaine seeking in the IntA model, which has previously shown to be ineffective in other models that promote habit-like cocaine seeking. Therefore, rats were implanted with jugular vein catheters and dorsolateral striatum (DLS) cannulae and trained to self-administer cocaine paired with an audiovisual cue with ContA or IntA. In subsets of rats, we evaluated: the ability of Pavlovian cue extinction to reduce cue-induced drug seeking; motivation for cocaine using a progressive ratio procedure; punishment-resistant cocaine taking by pairing cocaine infusions with footshocks; and dependence of drug-seeking on DLS dopamine (a measure of habit-like behavior) with the dopamine antagonist cis-flupenthixol. Overall, cue extinction reduced cue-induced drug seeking after ContA or IntA. Compared to ContA, IntA resulted in increased motivation for cocaine exclusively in females, but IntA facilitated punished cocaine self-administration exclusively in males. After 10 days of IntA training, but not fewer, drug-seeking was dependent on DLS dopamine most notably in males. Our results suggest that IntA may be valuable for identifying sex differences in the early stages of drug use and provide a foundation for the investigation of the mechanisms involved.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Humanos , Ratos , Feminino , Animais , Masculino , Cocaína/farmacologia , Dopamina/farmacologia , Motivação , Inibidores da Captação de Dopamina , Comportamento de Procura de Droga , Autoadministração , Sinais (Psicologia) , Extinção Psicológica
11.
Transl Psychiatry ; 13(1): 313, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37802983

RESUMO

Substance use in adolescence is a known risk factor for the development of neuropsychiatric and substance use disorders in adulthood. This is in part due to the fact that critical aspects of brain development occur during adolescence, which can be altered by drug use. Despite concerted efforts to educate youth about the potential negative consequences of substance use, initiation remains common amongst adolescents world-wide. Additionally, though there has been substantial research on the topic, many questions remain about the predictors and the consequences of adolescent drug use. In the following review, we will highlight some of the most recent literature on the neurobiological and behavioral effects of adolescent drug use in rodents, non-human primates, and humans, with a specific focus on alcohol, cannabis, nicotine, and the interactions between these substances. Overall, consumption of these substances during adolescence can produce long-lasting changes across a variety of structures and networks which can have enduring effects on behavior, emotion, and cognition.


Assuntos
Comportamento do Adolescente , Cannabis , Transtornos Relacionados ao Uso de Substâncias , Animais , Adolescente , Humanos , Etanol , Cognição , Nicotina/farmacologia
12.
bioRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662292

RESUMO

Learning and memory mechanisms are critically involved in drug craving and relapse. Environmental cues paired with repeated drug use acquire incentive value such that exposure to the cues alone can trigger craving and relapse. The amygdala, particularly the lateral amygdala (LA), underlies cue-related learning processes that assign valence to environmental stimuli including drug-paired cues. Evidence suggests that the ventral tegmental area (VTA) dopamine (DA) projection to the LA participates in encoding reinforcing effects that act as a US in conditioned cue reward-seeking as DA released in the amygdala is important for emotional and behavioral functions. Here we used chemogenetics to manipulate these VTA DA inputs to the LA to determine the role of this projection for acquisition of drug-cue associations and reinstatement of drug-seeking. We found inhibiting DA input to the LA during cocaine self-administration slowed acquisition and weakened the ability of the previously cocaine-paired cue to elicit cocaine-seeking. Conversely, exciting the projection during self-administration boosted the salience of the cocaine-paired cue as indicated by enhanced responding during cue-induced reinstatement. Importantly, interfering with DA input to the LA had no impact on the ability of cocaine to elicit a place preference or induce reinstatement in response to a priming cocaine injection. Overall, we show that manipulation of projections underlying DA signaling in the LA may be useful for developing therapeutic interventions for substance use disorders.

13.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546826

RESUMO

A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking when drug seeking is goal-directed but not habitual. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habitual cue-induced cocaine seeking and how it is impacted by cue extinction. Rats trained to self-administer cocaine paired with an audiovisual cue on schedules of reinforcement that promote goal-directed or habitual cocaine seeking had different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium and dopamine responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habitual behavior and the DLS are unaffected.

14.
Front Behav Neurosci ; 16: 950000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212195

RESUMO

Persistent glucocorticoid elevation consistent with chronic stress exposure can lead to psychopathology, including mood and anxiety disorders. Women and stress-exposed adolescents are more likely to be diagnosed with mood disorders, suggesting that sex and age are important factors in determining vulnerability, though much remains to be determined regarding the mechanisms underlying this risk. Thus, the aim of the present experiments was to use the chronic corticosterone (CORT) exposure paradigm, a model of depression-like behavior that has previously been established primarily in adult males, to determine the mood-related effects of CORT in female and adolescent rats. Depression- and anxiety-like effects in adulthood were determined using the sucrose preference (SPT), the forced swim test (FST), the elevated plus maze, and fear conditioning. Basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) glutamate receptor subunit levels were then measured. In a subsequent experiment, adult male and female rats were tested for the effects of pharmacological activation (via AMPA) or inhibition (via NBQX) of AMPA receptors in the BLA on behavior in the FST. Overall, females showed reduced anxiety- and depressive-like behaviors relative to males. However, females treated with CORT in adolescence, but not adulthood, had increased immobility in the FST, indicative of depression-like behavior. In contrast, CORT did not alter behavior in adolescent-treated males, though the previously reported depression-like effect of adult CORT exposure was observed. Control females had higher expression of the AMPA receptor subunits GluA1 and GluA2/3 selectively in the BLA relative to males. Adolescent CORT treatment, however, decreased BLA GluA1 and GluA2/3 expression in females, but increased expression in males, consistent with the direction of depression-like behavioral effects. Male and female rats also demonstrated opposing patterns of response to BLA AMPA receptor modulation in the FST, with AMPA infusion magnifying the sex difference of decreased immobility in females. Overall, these experiments show that increased glutamate receptor function in the BLA may decrease the risk of developing depressive-like behavior, further supporting efforts to target glutamatergic receptors for the treatment of stress-related psychiatric disorders. These findings also support further focus on sex as a biological variable in neuropsychiatric research.

15.
J Neurosci ; 30(31): 10526-33, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20685995

RESUMO

Extinction therapy has been proposed as a method to reduce the motivational impact of drug-associated cues to prevent relapse. Cue extinction therapy, however, takes place in a novel context (e.g., treatment facility), and is unlikely to be effective due to the context specificity of extinction. We tested the hypothesis that d-cycloserine (DCS), which enhances extinction in other procedures, would enhance extinction of cocaine-associated cues in a novel context to reduce cue-induced reinstatement. Male Sprague Dawley rats were trained to self-administer cocaine associated with a cue. The cue was later extinguished in the drug-taking context (context A) or a novel context (context B) using a Pavlovian cue extinction procedure designed to mimic human cue exposure therapy. DCS was administered systemically or into a specific brain region immediately following the cue extinction sessions to enhance the consolidation of extinction learning. We demonstrate that DCS given postextinction session in context B reduces reinstatement in context A, indicating a reduction in the context specificity of extinction learning. The effect of systemic DCS was recapitulated by administration of DCS into the nucleus accumbens core, but not in the basolateral amygdala, dorsal hippocampus, infralimbic or prelimbic prefrontal cortex. DCS treatment caused a reduction in cue-induced reinstatement only when it was given after cue extinction sessions, and not when given 1) in the absence of extinction or 2) after a brief memory reactivation session. A pharmacological method that can render extinction context independent may provide an innovative method to reduce cue-induced relapse in addicts and to study the neurobiology of addiction.


Assuntos
Cocaína/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , Ciclosserina/farmacologia , Extinção Psicológica/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Análise de Variância , Animais , Comportamento Aditivo , Cocaína/farmacologia , Condicionamento Operante/fisiologia , Meio Ambiente , Extinção Psicológica/fisiologia , Masculino , Núcleo Accumbens/fisiologia , Ratos , Ratos Sprague-Dawley , Recompensa , Autoadministração , Fatores de Tempo
16.
J Neurosci ; 30(12): 4401-7, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20335476

RESUMO

Drug addiction is a chronic disorder associated with recurrent craving and relapse often precipitated by the presence of drug-associated stimuli. Pharmacological and behavioral treatments that disrupt drug-associated stimulus memories could be beneficial in the treatment of addictive disorders. Memory restabilization (or reconsolidation) following retrieval of drug-paired stimuli depends upon the amygdala. Here we assessed whether amygdalar PKA is required for the reconsolidation of an appetitive, cocaine-paired stimulus. Rats were trained to lever press for intravenous cocaine infusions paired with a light/tone conditioned stimulus. After 12 d of acquisition, rats either underwent lever extinction (8-12 d) followed by light/tone reactivation and subsequent cue-induced and cocaine-induced (15 mg/kg, i.p.) reinstatement testing or were subsequently tested to assess the ability of the light/tone stimulus to serve as a conditioned reinforcer in the acquisition of a new instrumental response (nose poking). Bilateral intra-amygdalar infusions of the PKA inhibitor Rp-cAMPS (18 microg per side) given immediately following light/tone stimulus reactivation decreased subsequent cue-induced reinstatement and responding with a conditioned reinforcer, while having no effect on cocaine-induced reinstatement. Intra-amygdalar infusions of Rp-cAMPS made 3 h following reactivation or immediately following no stimulus reactivation had no effect on subsequent cue-induced reinstatement. These data show that memory reconsolidation for a cocaine-paired stimulus is retrieval dependent and time limited and critically depends upon amygdalar PKA.


Assuntos
Tonsila do Cerebelo/metabolismo , Cocaína/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Tonsila do Cerebelo/efeitos dos fármacos , Análise de Variância , Animais , Aprendizagem por Associação/efeitos dos fármacos , Condicionamento Operante/fisiologia , Sinais (Psicologia) , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Masculino , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Autoadministração/métodos , Tionucleotídeos/farmacologia
17.
J Neurosci ; 30(27): 9140-4, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20610747

RESUMO

Differences between men and women in alcohol abuse prevalence have long been attributed to social and hormonal factors. It is, however, becoming apparent that sex differences in substance dependence are also influenced by genetic factors. Using a four core genotype mouse model that enables dissociation of chromosomal and gonadal sex, we show that habitual responding for alcohol reinforcement is mediated by sex chromosome complement independent of gonadal phenotype. After moderate instrumental training, chromosomal male (XY) mice became insensitive to outcome devaluation, indicating habitual responding. Chromosomal female (XX) mice remained sensitive to outcome devaluation, signifying goal-directed behavior. There was no effect of gonadal phenotype on habitual responding. Conversely, alcohol drinking was predicted by gonadal phenotype independent of sex chromosome complement. These results indicate that different alcoholism-related behaviors are determined independently by gonadal and chromosomal sex.


Assuntos
Alcoolismo/genética , Alcoolismo/fisiopatologia , Comportamento Animal/fisiologia , Caracteres Sexuais , Cromossomos Sexuais , Análise de Variância , Animais , Aprendizagem da Esquiva/fisiologia , Peso Corporal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/administração & dosagem , Condicionamento Operante/fisiologia , Etanol/administração & dosagem , Feminino , Preferências Alimentares/fisiologia , Habituação Psicofisiológica/genética , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Orquiectomia/métodos , Esquema de Reforço , Aberrações dos Cromossomos Sexuais , Proteína da Região Y Determinante do Sexo/genética
18.
Neurobiol Learn Mem ; 96(4): 609-23, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21376820

RESUMO

Over the past several years, drug addiction has increasingly been accepted to be a disease of the brain as opposed to simply being due to a lack of willpower or personality flaw. Exposure to addictive substances has been shown to create enduring changes in brain structure and function that are thought to underlie the transition to addiction. Specific genetic and environmental vulnerability factors also influence the impact of drugs of abuse on the brain and can enhance the likelihood of becoming an addict. Long-lasting alterations in brain function have been found in neural circuits that are known to be responsible for normal appetitive learning and memory processes and it has been hypothesized that drugs of abuse enhance positive learning and memory about the drug while inhibiting learning about the negative consequences of drug use. Therefore, the addict's behavior becomes increasingly directed towards obtaining and using drugs of abuse, while at the same time developing a poorer ability to stop using, even when the drug is less rewarding or interferes with functioning in other facets of life. In this review we will discuss the clinical evidence that addicted individuals have altered learning and memory and describe the possible neural substrates of this dysfunction. In addition, we will explore the pre-clinical evidence that drugs of abuse cause a progressive disorder of learning and memory, review the molecular and neurobiological changes that may underlie this disorder, determine the genetic and environmental factors that may increase vulnerability to addiction, and suggest potential strategies for treating addiction through manipulations of learning and memory.


Assuntos
Encéfalo/fisiopatologia , Aprendizagem/fisiologia , Memória/fisiologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Humanos , Recompensa , Transtornos Relacionados ao Uso de Substâncias/psicologia
19.
Behav Brain Res ; 411: 113370, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34051230

RESUMO

The amygdala is critical for emotional processing and motivated behavior. Its role in these functions is due to its processing of the valence of environmental stimuli. The amygdala receives direct sensory input from sensory thalamus and cortical regions to integrate sensory information from the environment with aversive and/or appetitive outcomes. As many reviews have discussed the amygdala's role in threat processing and fear conditioning, this review will focus on how the amygdala encodes positive valence and the mechanisms that allow it to distinguish between stimuli of positive and negative valence. These findings are also extended to consider how valence encoding populations in the amygdala contribute to local and long-range circuits including those that integrate environmental cues and positive valence. Understanding the complexity of valence encoding in the amygdala is crucial as these mechanisms are implicated in a variety of disease states including anxiety disorders and substance use disorders.


Assuntos
Tonsila do Cerebelo/fisiologia , Emoções/fisiologia , Motivação/fisiologia , Afeto , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/fisiologia , Medo , Felicidade , Humanos , Rede Nervosa/fisiologia
20.
Psychopharmacology (Berl) ; 238(1): 305-319, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33111197

RESUMO

RATIONALE: Initial exposure to cannabinoids, including Δ-9-tetrahydrocannabinol (THC), often occurs during adolescence. Considerable neurodevelopmental alterations occur throughout adolescence, and the environmental insult posed by exogenous cannabinoid exposure may alter natural developmental trajectories. Multiple studies suggest that long-lasting deficits in cognitive function occur as a result of adolescent cannabis use, but considerable variability exists in the magnitude of these effects. OBJECTIVES: We sought to establish a novel procedure for achieving intravenous THC self-administration in adolescent rats in order to determine if volitional THC intake in adolescence produced indices of addiction-related behavior, altered working memory performance in adulthood, or altered the expression of proteins associated with these behaviors across several brain regions. METHODS: Male and female adolescent rats learned to operantly self-administer escalating doses of THC intravenously from PD 32-51. Upon reaching adulthood they were tested in abstinence for cued reinstatement of THC-seeking and working memory performance on a delayed-match-to-sample task. In a separate cohort, glutamatergic, GABAergic, and cannabinoid receptor protein expression was measured in multiple brain regions. RESULTS: Both male and female adolescents self-administered THC and exhibited cue-induced lever pressing throughout abstinence. THC-exposed males exhibited slightly enhanced working memory performance in adulthood, and better performance positively correlated with total THC self-administered during adolescence. Adolescent THC-exposed rats exhibited reductions in CB1, GABA, and glutamate receptor protein, primarily in the prefrontal cortex, dorsal hippocampus, and ventral tegmental area. CONCLUSIONS: These results suggest that THC exposure at self-administered doses can produce moderate behavioral and molecular alterations, including sex-dependent effects on working memory performance in adulthood.


Assuntos
Envelhecimento/efeitos dos fármacos , Comportamento Aditivo/induzido quimicamente , Encéfalo/efeitos dos fármacos , Dronabinol/toxicidade , Memória de Curto Prazo/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Envelhecimento/metabolismo , Envelhecimento/psicologia , Animais , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Encéfalo/metabolismo , Dronabinol/administração & dosagem , Feminino , Injeções Intravenosas , Masculino , Fumar Maconha/efeitos adversos , Fumar Maconha/psicologia , Ratos , Receptores de Superfície Celular/genética , Autoadministração , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa