Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 10(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34827281

RESUMO

Infected cutaneous ulcers from diabetic rats with Candida albicans and Streptococcus aureus were treated with spray formulations containing green silver nanoparticles (GS), chemical silver nanoparticles (CS), or pomegranate peel extract (PS). After wound development and infection, the treatments were performed twice per day for 14 days. The wound healing was analyzed on days 2, 7, and 14 through the determination of CFUs, inflammatory infiltrate, angiogenesis, fibroplasia, myeloperoxidase, and collagen determination. Expressive improvement in wound healing was noted using both silver nanoparticles for 7 days. All the treatments were superior to controls and promoted significant S. aureus reduction after 14 days. CS presented better anti-inflammatory results, and GS and CS the highest number of fibroblasts. Despite the techniques' limitations, GS and CS demonstrated considerable potential for managing infected wounds, especially considering no early strategies prior to the drugs, such as the debridement of these wounds, were included.

2.
Int J Biol Macromol ; 136: 570-578, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226369

RESUMO

The considerable role of pristine bacterial cellulose membranes (BC) as ideal dressings have been widely demonstrated to treat wounds and burns. Nevertheless, drawbacks regarding antimicrobial spectrum and frequent dressing replacement are still present. Based on this, the present work proposes an innovative dressing by incorporating a technological self-microemulsifying formulation (SMEF) encapsulating propolis (BC/PP). BC/PP was fully chemically and biologically characterized employing in vitro and in vivo models. Antimicrobial studies demonstrated BC/PP high efficiency against both gran-negative and gran-positive bacteria. Release studies evidenced propolis markers sustained release for up to 7 days. In vivo wound healing activity was assessed by wound healing rate, anti-inflammatory and tissue formation events and the results evidenced the pro-inflammatory activity of BC/PP, which could promote improved healing results. To conclude, BC/PP presented an outstanding antibacterial activity in vitro with weekly replacement and promotion of healing, offering, for the first time, a broad-spectrum biomembrane potential to treat infected wounds.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bandagens , Celulose/química , Membranas Artificiais , Própole/química , Cicatrização/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Colágeno/biossíntese , Composição de Medicamentos , Emulsões , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Ratos Wistar
3.
Antibiotics (Basel) ; 7(3)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949885

RESUMO

The phytosynthesis of metal nanoparticles is nowadays attracting the increased attention of researchers and is much needed given the worldwide matter related to environmental contamination. The antimicrobial activity of colloidal and spray formulation of silver nanoparticles (AgNPs) synthesized by pomegranate peel extract against Candida albicans and Staphylococcus aureus, and their cytotoxicity in mammalian cells were tested in the present study. Dry matter, pH, total phenolics, and ellagic acid in the extract were determined. Then, AgNPs were phytosynthesized and characterized by X-ray diffraction, electron transmission microscopy, dynamic light scattering, zeta potential, and Ag⁺ dosage. Spray formulations and respective chemical-AgNP controls were prepared and tested. The peel extract reduced more than 99% of Ag⁺, and produced nanoparticles with irregular forms and an 89-nm mean size. All AgNP presented antimicrobial activity, and the spray formulation of green-AgNP increased by 255 and 4 times the effectiveness against S. aureus and C. albicans, respectively. The cytotoxicity of colloidal and spray green-AgNP was expressively lower than the respective chemical controls. Pomegranate peel extract produced stable AgNP with antimicrobial action and low cytotoxicity, stimulating its use in the biomedical field.

4.
J Pharm Biomed Anal ; 123: 195-204, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-26897464

RESUMO

The control and treatment of Leishmaniasis, a neglected and infectious disease affecting approximately 12 million people worldwide, are challenging. Leishmania parasites multiply intracellularly within macrophages located in deep skin and in visceral tissues, and the currently employed treatments for this disease are subject to significant drawbacks, such as resistance and toxicity. Thus, the search for new Leishmaniasis treatments is compulsory, and Ocotea duckei Vattimo, a plant-derived product from the biodiverse Brazilian flora, may be a promising new treatment for this disease. In this regard, the aim of this work was to develop and characterize a delivery system based on solid lipid nanoparticles (SLN) that contain the liposoluble lignan fraction (LF) of Ocotea duckei Vattimo, which targets the Leishmania phagolysosome of infected macrophages. LF-loaded SLNs were obtained via the hot microemulsion method, and their physical and chemical properties were comprehensively assessed using PCS, AFM, SEM, FT-IR, DSC, HPLC, kinetic drug release studies, and biological assays. The size of the developed delivery system was 218.85±14.2 nm, its zeta potential was -30 mV and its entrapment efficiency (EE%) was high (the EEs% of YAN [yangambin] and EPI-YAN [epi-yangambin] markers were 94.21±0.40% and 94.20±0.00%, respectively). Microscopy, FT-IR and DSC assays confirmed that the delivery system was nanosized and indicated a core-shell encapsulation model, which corroborated the measured kinetics of drug release. The total in vitro release rates of YAN and EPI-YAN in buffer (with sink conditions attained) were 29.6±8.3% and 34.3±8.9%, respectively, via diffusion through the cellulose acetate membrane of the SLN over a period of 4 h. After 24 h, the release rates of both markers reached approximately 45%, suggesting a sustained pattern of release. Mathematical modeling indicated that both markers, YAN and EPI-YAN, followed matrix diffusion-based release kinetics (Higuchi's model) with an estimated diffusion coefficient (D) of 1.3.10(-6) cm(2)/s. The LF-loaded SLNs were non-toxic to murine macrophages (20-80 µg mL(-1) range) and exerted a prominent anti-leishmanial effect (20 µg mL(-1)). These data suggest this new and well-characterized lipid nanoparticle delivery system safely and effectively kills Leishmania and warrants further clinical investigation.


Assuntos
Antiparasitários/administração & dosagem , Antiparasitários/química , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Animais , Bioensaio/métodos , Brasil , Química Farmacêutica/métodos , Difusão , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Cinética , Leishmaniose/parasitologia , Lignanas/administração & dosagem , Lignanas/química , Lipídeos/administração & dosagem , Lipídeos/química , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Força Atômica/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Ocotea/química , Tamanho da Partícula , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Pele/parasitologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa