RESUMO
A newly designed C3-symmetric disc-shaped chromophore, BTT(NDI)3, features electron accepting naphthalene diimides linked to an electron donor BTT core. BTT(NDI)3 self-assembles in apolar solvents into highly ordered, chiral supramolecular fibers through π-π and 3-fold hydrogen-bonding interactions. This leads to a cooperative formation of plane-to-plane stacking of BTTs and J-aggregation of the outer NDIs. Such a structure ensures high charge mobility. Only photoexcitation of BTT in the BTT(NDI)3 polymers triggers a unidirectional electron transfer from BTT to NDI and results in (BTTâ¢+-NDIâ¢-) lifetimes that are by up to 3 orders of magnitude longer compared to (NDIâ¢+-NDIâ¢-) that is formed upon NDI photoexcitation. A multiphasic decay implies ambipolar pathways for charge carriers, that is, electron and hole delocalization along the respective BTT and NDI stacks. Our supramolecular approach offers potential for developing functional supramolecular polymers with continuous pathways for electrons and holes and, in turn, minimizing charge recombination losses in organic photovoltaic devices.
RESUMO
Two series of metallo-(Zn(II), Mg(II), and Ru(II)) and free-base phthalocyanines (Pcs) with a carboxyl anchoring group and well-established bulky peripheral substituents (either tert-butyl or bulky 2,6-diisopropylphenoxy) were synthesized and tested as sensitizers in dye-sensitized solar cells (DSSCs). The trend of photovoltaic efficiencies (PCEs) for free-base and metallo Pcs followed the order Zn(II)Pc>Mg(II)Pcâ«H2Pc ≈ Ru(II)Pc regardless of the peripheral substitution. Higher efficiencies (4.95 versus 3.63 for the Zn(II) derivatives) were achieved with Pcs bearing the bulkier 2,6-diisopropylphenoxy group, indicating a lower aggregation and more suitable HOMO-LUMO levels. Furthermore, these derivatives showed a morelevant influence of the metal on the PCE values (from the highest 4.95 for the Zn(II)Pc to the lowest 0.23 for the Ru(II)Pc. In both series, the best PCEs observed with the Zn(II) derivatives were mainly due to their highest Jsc values. The lowest efficiencies found for the free-bases and Ru(II) derivatives were attributed to a mismatch between their LUMO levels and the conduction band of the TiO2,and lower light-harvesting capabilities, respectively. In conclusion, Zn(II) derivatives are still the best Pc candidates to use as sensitizers in molecular photovoltaics.
RESUMO
The development of novel synthetic methods has greatly expanded the toolbox available to chemists for engineering porphyrin and phthalocyanine derivatives with precise electronic and optical properties. In this study, we focus on the UV-vis absorption characteristics of substituted phthalocyanines and their contracted analogs, subphthalocyanines, which feature nonplanar, bowl-shaped geometries. These macrocycles, which are central to numerous applications in materials science and catalysis, possess extensive π-conjugated systems that drive their unique electronic properties. We explore how the change from a metalloid (B) to a metal (Zn) and the resulting coordination environments influence the aromaticity and, consequently, the spectroscopic features of these systems. A combined computational and experimental approach reveals a direct correlation between the aromaticity of the external conjugated pathways and the Q bands in the UV-vis spectra. Our findings highlight key structural modifications that can be leveraged to fine-tune the optical properties of porphyrinoid systems, offering new pathways for the design of advanced materials and catalysts with tailored functionalities.
RESUMO
The design, synthesis and evaluation of a subphthalocyanine-flipper (SubPc-Flipper) amphiphilic dyad is reported. This dyad combines two fluorophores that function in the visible region (420-800 nm) for the simultaneous sensing of both ordered and disordered lipidic membranes. The flipper probes part of the dyad possesses mechanosensitivity, long fluorescence lifetimes (τ = 3.5-5 ns) and selective staining of ordered membranes. On the other hand, subphthalocyanines (SubPc) are short-lifetime (τ = 1-2.5 ns) fluorophores that are insensitive to membrane tension. As a result of a Förster Resonance Energy Transfer (FRET) process, the dyad not only retains the mechanosensitivity of flippers but also demonstrates high selectivity and emission in different kinds of lipidic membranes. The dyad exhibits high emission and sensitivity to membrane tension (Δτ = 3.5 ns) when tested in giant unilamellar vesicles (GUVs) with different membrane orders. Overall, the results of this study represent a significant advancement in the applications of flippers and dyads in mechanobiology.
RESUMO
Triplet dynamics in singlet fission depend strongly on the strength of the electronic coupling. Covalent systems in solution offer precise control over such couplings. Nonetheless, efficient free triplet generation remains elusive in most systems, as the intermediate triplet pair 1 (T1 T1 ) is prone to triplet-triplet annihilation due to its spatial confinement. In the solid state, entropically driven triplet diffusion assists in the spatial separation of triplets, resulting in higher yields of free triplets. Control over electronic coupling in the solid state is, however, challenging given its sensitivity to molecular packing. We have thus developed a hexameric system (HexPnc) to enable solid-state-like triplet diffusion at the molecular scale. This system is realized by covalently tethering three pentacene dimers to a central subphthalocyanine scaffold. Transient absorption spectroscopy, complemented by theoretical structural optimizations and steady-state spectroscopy, reveals that triplet diffusion is indeed facilitated due to intramolecular cluster formation. The yield of free triplets in HexPnc is increased by a factor of up to 14 compared to the corresponding dimeric reference (DiPnc). Thus, HexPnc establishes crucial design aspects for achieving efficient triplet dissociation in strongly coupled systems by providing avenues for diffusive separation of 1 (T1 T1 ), while, concomitantly, retaining strong interchromophore coupling which preserves rapid formation of 1 (T1 T1 ).
RESUMO
The goal of harnessing the theoretical potential of singlet fission (SF), a process in which one singlet excited state is split into two triplet excited states, has become a central challenge in solar energy research. Covalently linked dimers provide crucial models for understanding the role of chromophore arrangement and coupling in SF. Sensitizers can be integrated into these systems to expand the absorption bandwidth through which SF can be accessed. Here, we define the role of the sensitizer-chromophore geometry in a sensitized SF model system. To this end, two conjugates have been synthesized consisting of a pentacene dimer (SF motif) connected via a rigid alkynyl bridge to a subphthalocyanine (the sensitizer motif) in either an axial or a peripheral arrangement. Steady-state and time-resolved photophysical measurements are used to confirm that both conjugates operate as per design, displaying near unity energy transfer efficiencies and high triplet quantum yields from SF. Decisively, energy transfer between the subphthalocyanine and pentacene dimer occurs ca. 26 times faster in the peripheral conjugate, even though the two chromophores are ca. 3 Å farther apart than in the axial conjugate. Following a theoretical evaluation of the dipolar coupling, Vdip2, and the orientation factor, κ2, of both the axial (Vdip2 = 140 cm-2; κ2 = 0.08) and the peripheral (Vdip2 = 724 cm-2; κ2 = 1.46) arrangements, we establish that this rate acceleration is due to a more favorable (nearly co-planar) relative orientation of the transition dipole moments of the subphthalocyanine and pentacenes in the peripheral constellation.
RESUMO
The peripheral borylation of porphyrinoids has become a key step to prepare advanced functional materials. This study reports the synthesis, electronic properties, and reactivity of borylated subphthalocyanines. These compounds, which are prepared by Suzuki-Miyaura borylation in excellent yields, are easily purified, display a great stability, and serve as powerful starting materials for the post-functionalization of SubPcs via cross-coupling reactions. Remarkably, this novel approach is more efficient than the methodologies already described and enables the preparation of exotic systems, such as SubPc dimeric species linked by C-C bonds, which are not accessible so far and present promising properties for optoelectronic devices.
RESUMO
Half a century after the synthesis of the first subporphyrinoid, the study of tripyrrole and trisoindole porphyrin analogues constitutes a fervent and rapidly expanding research area. The outstanding structural, electronic and optical features of these cone-shaped aromatic macrocycles render them attractive candidates for a wide variety of applications, ranging from optoelectronics to biomedicine. To tune their properties and exploit their functionalities, the development of novel methodologies for the synthesis and post-functionalization of these contracted porphyrinoids, as well as a deep understanding of their supramolecular organization and their implementation into multicomponent systems of increasing complexity are of paramount importance. Herein, a review of the most recent advances in the fundamentals and applications of subporphyrinoids is presented, which comprehensively cover the last decade of discoveries. The final aim is to highlight the chemical versatility and intriguing physicochemical features of subporphyrinoids, while providing an updated overview of their most promising applications.
Assuntos
Porfirinas , Porfirinas/químicaRESUMO
New substituted [30]trithiadodecaazahexaphyrines (hemihexaphyrazines) were synthesized by a crossover condensation of 2,5-diamino-1,3,4-thiadiazole with 4-chloro-5-(2,6-diisopropylphenoxy)- or 4,5-bis-(2,6-diisopropylphenoxy)phthalonitriles. The compounds were characterized by 1H-, 13C-NMR, including COSY, HMBC, and HSQC spectroscopy, MALDI TOF spectrometry, elemental analysis, IR and UV-Vis absorbance and fluorescence techniques.
RESUMO
Herein we report the first example of a supramolecular cage that works as a catalytic molecular reactor to perform transformations over fullerenes in aqueous medium. Taking advantage of the ability of metallo-organic Pd(II)-subphthalocyanine (SubPc) capsules to form stable host:guest complexes with C60 , we have prepared a water-soluble cage that provides a hydrophobic environment for conducting cycloadditions over encapsulated C60 , namely, Diels-Alder reactions with anthracene. Indeed, the presence of catalytic amounts of SubPc cage dissolved in water promotes co-encapsulation of insoluble C60 and anthracene substrates, allowing the reaction to occur inside the cavity under mild conditions. The lower stability of the host:guest complex with the resulting C60 cycloadduct facilitates its displacement by pristine C60 , which grants catalytic turnover. Moreover, bis-addition compounds are regioselectively formed inside the cage when using excess anthracene.
RESUMO
Large π-conjugated systems are key in the area of molecular materials. Herein, we prepare via AuI -catalyzed cyclization a series of fully π-conjugated anthracene-fused oligo-BODIPYs. Their structural and optoelectronic properties were studied by several techniques, ranging from X-ray, UV/Vis, and cyclic voltammetry to transient absorption spectroscopy. As a complement, their electronic structures were explored by means of Density Functional Theory (DFT) calculations. Depending on the size and shape of the π-conjugated skeleton, unique features-such as face-to-face supramolecular organization, NIR absorption and fluorescence as well as strong electron accepting character-were noted. All in all, the aforementioned features render them valuable for technological applications.
RESUMO
We describe here a near infrared light-responsive elastin-like peptide (ELP)-based targeted nanoparticle (NP) that can rapidly switch its size from 120 to 25â nm upon photo-irradiation. Interestingly, the targeting function, which is crucial for effective cargo delivery, is preserved after transformation. The NPs are assembled from (targeted) diblock ELP micelles encapsulating photosensitizer TT1-monoblock ELP conjugates. Methionine residues in this monoblock are photo-oxidized by singlet oxygen generated from TT1, turning the ELPs hydrophilic and thus trigger NP dissociation. Phenylalanine residues from the diblocks then interact with TT1 via π-π stacking, inducing the re-formation of smaller NPs. Due to their small size and targeting function, the NPs penetrate deeper in spheroids and kill cancer cells more efficiently compared to the larger ones. This work could contribute to the design of "smart" nanomedicines with deeper penetration capacity for effective anticancer therapies.
Assuntos
Elastina , Nanopartículas , Elastina/química , Peptídeos/química , Nanopartículas/química , MicelasRESUMO
The development of chiral materials is severely limited by the challenge to achieve enantiopure derivatives with both configurational stability and good optoelectronic properties. Herein we demonstrate that enantiopure subphthalocyanines (SubPcs) fulfill such demanding requirements and bear the prospect of becoming components of chiral technologies. Particularly, we describe the synthesis of enantiopure SubPcs and assess the impact of chirality on aspects as fundamental as the supramolecular organization, the behavior in contact with metallic surfaces, and the on-surface reactivity and polymerization. We find that enantiopure SubPcs remarkably tend to organize in columnar polar assemblies at the solid state and highly ordered chiral superstructures on Au(111) surfaces. At the metal interface, such SubPcs are singled out by scanning tunneling microscopy. DFT calculations suggest that SubPcs undergo a bowl-to-bowl inversion that was shown to be dependent on the axial substituent. Finally, we polymerize by means of on-surface synthesis a highly regular 2D, porous and chiral, π-extended polymer that paves the way to future nanodevice fabrication.
RESUMO
The synthesis of novel polymeric materials with porphyrinoid compounds as key components of the repeating units attracts widespread interest from several scientific fields in view of their extraordinary variety of functional properties with potential applications in a wide range of highly significant technologies. The vast majority of such polymers present a closed-shell ground state, and, only recently, as the result of improved synthetic strategies, the engineering of open-shell porphyrinoid polymers with spin delocalization along the conjugation length has been achieved. Here, we present a combined strategy toward the fabrication of one-dimensional porphyrinoid-based polymers homocoupled via surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituents on Au(111). Scanning tunneling microscopy and noncontact atomic force microscopy describe the thermal-activated intra- and intermolecular oxidative ring closure reactions as well as the controlled tip-induced hydrogen dissociation from the porphyrinoid units. In addition, scanning tunneling spectroscopy measurements, complemented by computational investigations, reveal the open-shell character, that is, the antiferromagnetic singlet ground state (S = 0) of the formed polymers, characterized by singlet-triplet inelastic excitations observed between spins of adjacent porphyrinoid units. Our approach sheds light on the crucial relevance of the π-conjugation in the correlations between spins, while expanding the on-surface synthesis toolbox and opening avenues toward the synthesis of innovative functional nanomaterials with prospects in carbon-based spintronics.
RESUMO
Porphyrinoids are considered perfect candidates for their incorporation into electron donor-acceptor (D-A) arrays due to their remarkable optoelectronic properties and low reorganization energies. For the first time, a series of subphthalocyanine (SubPc) and corrole (Cor) were covalently connected through a short-range linkage. SubPc axial substitution strategies were employed, which allowed the synthesis of the target molecules in decent yields. In this context, a qualitative synthetic approach was performed to reverse the expected direction of the different electronic events. Consequently, in-depth absorption, fluorescence, and electrochemical assays enabled the study of electronic and photophysical properties. Charge separation was observed in cases of electron-donating Cors, whereas a quantitative energy transfer from the Cor to the SubPc was detected in the case of electron accepting Cors.
Assuntos
Porfirinas , Porfirinas/química , Elétrons , Transferência de Energia , EletrônicaRESUMO
Electron-donating corroles (Cor) were integrated with electron-accepting phthalocyanines (Pc) to afford two different non-covalent Cor â Pc systems. At the forefront was the coordination between a 10-meso-pyridine Cor and a ZnPc. The complexation was corroborated in a combination of NMR, absorption, and fluorescence assays, and revealed association with binding constants as high as 106 â m-1 . Steady-state and time-resolved spectroscopies evidenced that regardless of exciting Cor or Pc, the charge-separated state evolved efficiently in both cases, followed by a slow charge-recombination to reinstate the ground state. The introduction of non-covalent linkages between Cor and Pc induces sizeable differences in the context of light harvesting and transfer of charges when compared with covalently linked Cor-Pc conjugates.
Assuntos
Elétrons , Porfirinas , Espectroscopia de Ressonância Magnética , Porfirinas/químicaRESUMO
The modification of surfaces with multiple ligands allows the formation of platforms for the study of multivalency in diverse processes. Herein we use this approach for the implementation of a photosensitizer (PS)-nanocarrier system that binds efficiently to siglec-10, a member of the CD33 family of siglecs (sialic acid (SA)-binding immunoglobulin-like lectins). In particular, a zinc phthalocyanine derivative bearing three SA moieties (PcSA) has been incorporated in the membrane of small unilamellar vesicles (SUVs), retaining its photophysical properties upon insertion into the SUV's membrane. The interaction of these biohybrid systems with human siglec-10-displaying supported lipid bilayers (SLBs) has shown the occurrence of weakly multivalent, superselective interactions between vesicle and SLB. The SLB therefore acts as an excellent cell membrane mimic, while the binding with PS-loaded SUVs shows the potential for targeting siglec-expressing cells with photosensitizing nanocarriers.
Assuntos
Lipossomos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Membrana Celular/metabolismo , Humanos , Ligantes , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismoRESUMO
Stimuli-responsive recombinant elastin-like polypeptides (ELPs) are artificial protein polymers derived from the hydrophobic domain of tropoelastin that have attracted significant interest for drug delivery and tissue engineering applications. In the present study, we have conjugated a photosensitizer (PS) to a hydrophobic methionine-containing ELP scaffold, which upon reaction with singlet oxygen (1O2) is transformed into a hydrophilic sulfoxide derivative facilitating the disassembly of photosensitizer-delivery particles during the photodynamic therapy (PDT) process. A peripherally substituted carboxy-Zn(II)-phthalocyanine derivative (TT1) bearing a carboxyl group directly linked to the Pc-ring, and presenting an absorption maximum around 680 nm, was selected as PS which simultaneously acted as a photooxidation catalyst. A TT1-ELP[M1V3-40] conjugate was prepared from ELP[M1V3-40] modified with an alkyne group at the N-terminal chain end, and from TT1-amide-C3-azide by copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. This innovative model photooxidation sensitive PS delivery technology offers promising attributes in terms of temperature-controlled particle formation and oxidation-triggered release, narrow molar mass distribution, reproducibility, scalability, non-immunogenicity, biocompatibility, and biodegradability for pharmaceutical applications in an effort to improve the clinical effectiveness of PDT treatments.
Assuntos
Elastina/química , Oxidantes Fotoquímicos/farmacologia , Peptídeos/farmacologia , Humanos , Micelas , Estrutura Molecular , Oxidantes Fotoquímicos/química , Oxirredução , Peptídeos/química , FotoquimioterapiaRESUMO
Design and synthesis of novel photosensitizer architectures is a key step toward new multifunctional molecular materials. Photoactive Janus-type molecules provide interesting building blocks for such systems by presenting two well-defined chemical functionalities that can be utilized orthogonally. Herein a multifunctional phthalocyanine is reported, bearing a bulky and positively charged moiety that hinders their aggregation while providing the ability to adhere on DNA origami nanostructures via reversible electrostatic interactions. On the other hand, triethylene glycol moieties render a water-soluble and chemically inert corona that can stabilize the structures. This approach provides insight into the molecular design and synthesis of Janus-type sensitizers that can be combined with biomolecules, rendering optically active biohybrids.
Assuntos
DNA/química , Indóis/química , Nanotecnologia , Isoindóis , Luz , Nanoestruturas/química , Conformação de Ácido Nucleico , Eletricidade EstáticaRESUMO
An amine functionalized C3 -symmetric benzotrithiophene (BTT) monomer has been designed and synthetized in order to form pH responsive one-dimensional supramolecular polymers in aqueous media. While most of the reported studies looked at the effect of pH on the size of the aggregates, herein, a detailed mechanistic study is reported, carried out upon modifying the pH to trigger the formation of positively charged ammonium groups. A dramatic and reversible change in the polymerization mechanism and size of the supramolecular fibers is observed and ascribed to the combination of Coulombic repulsive forces and higher monomer solubility. Furthermore, the induced frustrated growth of the fibers is further employed to finely control the one-dimensional supramolecular polymerisation and copolymerization processes.