Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(4): 1894-1901, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36748888

RESUMO

Supramolecular study of the interactions between the major wine anthocyanin, malvidin-3-O-glucoside (Mv3G) and different wine phenolic compounds (quercetin 3-O-ß-glucopyranoside (QG), caffeic acid, (-)-epicatechin, (+)-catechin, and gallic acid) has been performed at two different molar ratios (1:1 and 1:2) in acidic medium where flavylium cation predominates (pH ≤ 2). Color variations have been evaluated by differential colorimetry using CIELAB color space. These studies have been complemented with isothermal titration calorimetry assays and molecular dynamics simulations. The color of Mv3G flavylium cation is modified by the interaction with QG toward more bluish and intense colors. Interaction constants between the anthocyanin and the different phenolic compounds were obtained, ranging from 9.72 × 108 M-1 for QG to 1.50 × 102 M-1 for catechin. Hydrophobic interactions and H-bonds are the main driving forces in the pigment/copigment aggregation, except for the interactions where caffeic acid is involved, in which hydrophobic interactions acquire greater preponderance.


Assuntos
Antocianinas , Ácidos Cafeicos , Vinho , Antocianinas/química , Catequina/química , Cátions , Cor , Fenóis/química , Vinho/análise , Ácido Gálico/química
2.
Foods ; 12(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835279

RESUMO

Wine astringency is a very complex sensation whose complete mechanism has not been entirely described. Not only salivary proline-rich proteins (PRPs) are involved in its development; salivary mucins can also play an important role. On the other hand, it has been described that anthocyanins can interact with PRPs, but there is no information about their potential role on the interactions with mucins. In this work, the molecular interactions between salivary mucins (M) and different wine phenolic compounds, such as catechin (C), epicatechin (E) and quercetin 3-ß-glucopyranoside (QG), as well as the effect of the anthocyanin malvidin 3-O-glucoside (Mv) on the interactions with mucins, were assessed by isothermal titration calorimetry (ITC). Results showed that the interaction between anthocyanin and mucins is stronger than that of both flavanols analyzed, since the affinity constant values were 10 times higher for anthocyanin than for catechin, the only flavanol showing interaction in binary assay. Moreover, at the concentration at which polyphenols are usually found in wine, flavonols seem not to be involved in the interactions with mucins. These results showed, for the first time, the importance of wine anthocyanins in the mechanisms of astringency involving high-molecular-weight salivary proteins like mucins.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa