Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 18(9): 5854-5861, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30165026

RESUMO

The atomic structure of nanoparticles can be easily determined by transmission electron microscopy. However, obtaining atomic-resolution chemical information about the individual atomic columns is a rather challenging endeavor. Here, crystalline monodispersed spinel Fe3O4/Mn3O4 core-shell nanoparticles have been thoroughly characterized in a high-resolution scanning transmission electron microscope. Electron energy-loss spectroscopy (EELS) measurements performed with atomic resolution allow the direct mapping of the Mn2+/Mn3+ ions in the shell and the Fe2+/Fe3+ in the core structure. This enables a precise understanding of the core-shell interface and of the cation distribution in the crystalline lattice of the nanoparticles. Considering how the different oxidation states of transition metals are reflected in EELS, two methods of performing a local evaluation of the cation inversion in spinel lattices are introduced. Both methods allow the determination of the inversion parameter in the iron oxide core and manganese oxide shell, as well as detecting spatial variations in this parameter, with atomic resolution. X-ray absorption measurements on the whole sample confirm the presence of cation inversion. These results present a significant advance toward a better correlation of the structural and functional properties of nanostructured spinel oxides.

2.
Langmuir ; 33(39): 10351-10365, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28895402

RESUMO

It has been long known that the physical encapsulation of oleic acid-capped iron oxide nanoparticles (OA-IONPs) with the cetyltrimethylammonium (CTA+) surfactant induces the formation of spherical iron oxide nanoparticle clusters (IONPCs). However, the behavior and functional properties of IONPCs in chemical reactions have been largely neglected and are still not well-understood. Herein, we report an unconventional ligand-exchange function of IONPCs activated when dispersed in an ethyl acetate/acetate buffer system. The ligand exchange can successfully transform hydrophobic OA-IONP building blocks of IONPCs into highly hydrophilic, acetate-capped iron oxide nanoparticles (Ac-IONPs). More importantly, we demonstrate that the addition of silica precursors (tetraethyl orthosilicate and 3-aminopropyltriethoxysilane) to the acetate/oleate ligand-exchange reaction of the IONPs induces the disassembly of the IONPCs into monodispersed iron oxide-acetate-silica core-shell-shell (IONPs@acetate@SiO2) nanoparticles. Our observations evidence that the formation of IONPs@acetate@SiO2 nanoparticles is initiated by a unique micellar fusion mechanism between the Pickering-type emulsions of IONPCs and nanoemulsions of silica precursors formed under ethyl acetate buffered conditions. A dynamic rearrangement of the CTA+-oleate bilayer on the IONPC surfaces is proposed to be responsible for the templating process of the silica shells around the individual IONPs. In comparison to previously reported methods in the literature, our work provides a much more detailed experimental evidence of the silica-coating mechanism in a nanoemulsion system. Overall, ethyl acetate is proven to be a very efficient agent for an effortless preparation of monodispersed IONPs@acetate@SiO2 and hydrophilic Ac-IONPs from IONPCs.

3.
Nano Lett ; 16(8): 5068-73, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27383904

RESUMO

The physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample.

4.
J Phys Chem B ; 124(42): 9456-9463, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32990436

RESUMO

Polydopamine (PDA) has a wide range of applications in biomedicine due to its high biocompatibility and surface chemistry and because of the presence of many functional groups in it, enabling further modification. As a catechol-like material, it has chelation properties for various types of metal ions, including iron. Here, we developed a procedure that uses PDA as a template to grow iron structures ß-FeOOH directly on its surface. The innovative approach of this work relies on that these structures can be obtained in neutral conditions and selective iron-ion source. The influence of iron-ion source, environment, and solution concentration on the structure and amount of resulting material is presented. The growth has been characterized over time, taking into account their photothermal, magnetic, and colloidal stability properties. Moreover, we shed new light on understanding the interaction of PDA with iron ions for the growth of iron-based nanostructure on polydopamine particles. Finally, we predict that PDA@ß-FeOOH nanoparticles could be a promising material in dual therapy merging photothermal therapy (PTT) treatment and magnetic resonance imaging (MRI) contrast agents.

5.
Ultramicroscopy ; 185: 42-48, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29182918

RESUMO

In this work, the use of cluster analysis algorithms, widely applied in the field of big data, is proposed to explore and analyze electron energy loss spectroscopy (EELS) data sets. Three different data clustering approaches have been tested both with simulated and experimental data from Fe3O4/Mn3O4 core/shell nanoparticles. The first method consists on applying data clustering directly to the acquired spectra. A second approach is to analyze spectral variance with principal component analysis (PCA) within a given data cluster. Lastly, data clustering on PCA score maps is discussed. The advantages and requirements of each approach are studied. Results demonstrate how clustering is able to recover compositional and oxidation state information from EELS data with minimal user input, giving great prospects for its usage in EEL spectroscopy.

6.
ACS Nano ; 12(10): 10291-10300, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30256610

RESUMO

Electric-field-controlled magnetism can boost energy efficiency in widespread applications. However, technologically, this effect is facing important challenges: mechanical failure in strain-mediated piezoelectric/magnetostrictive devices, dearth of room-temperature multiferroics, or stringent thickness limitations in electrically charged metallic films. Voltage-driven ionic motion (magneto-ionics) circumvents most of these drawbacks while exhibiting interesting magnetoelectric phenomena. Nevertheless, magneto-ionics typically requires heat treatments and multicomponent heterostructures. Here we report on the electrolyte-gated and defect-mediated O and Co transport in a Co3O4 single layer which allows for room-temperature voltage-controlled ON-OFF ferromagnetism (magnetic switch) via internal reduction/oxidation processes. Negative voltages partially reduce Co3O4 to Co (ferromagnetism: ON), resulting in graded films including Co- and O-rich areas. Positive bias oxidizes Co back to Co3O4 (paramagnetism: OFF). This electric-field-induced atomic-scale reconfiguration process is compositionally, structurally, and magnetically reversible and self-sustained, since no oxygen source other than the Co3O4 itself is required. This process could lead to electric-field-controlled device concepts for spintronics.

7.
ACS Appl Mater Interfaces ; 9(36): 30872-30879, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28829574

RESUMO

Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin-film electrodes of metal carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures neglect long-lasting chemical and structural stability, focusing only on electrochemical efficiency. Herein we report on a new approach to easily deposit and control the micro/nanostructure of thin-film electrodes based on niobium carbide (NbC) and their electrocatalytic response. We will show that, by improving the mechanical properties of the NbC electrodes, microstructure and mechanical resilience can be obtained while maintaining high electrocatalytic response. We also address the influence of other parameters such as conductivity and chemical composition on the overall performance of the thin-film electrodes. Finally, we show that nanocomposite NbC electrodes are promising candidates toward HER and, furthermore, that the methodology presented here is suitable to produce other transition-metal carbides with improved catalytic and mechanical properties.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa