Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Langmuir ; 39(16): 5793-5802, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37041655

RESUMO

Droplet impact behavior on a solid surface is critical for many industrial applications such as spray coating, food production, printing, and agriculture. For all of these applications, a common challenge is to modify and control the impact regime and contact time of the droplets. This challenge becomes more critical for non-Newtonian liquids with complex rheology. In this research, we explored the impact dynamics of non-Newtonian liquids (by adding different concentrations of Xanthan into water) on superhydrophobic surfaces. Our experimental results show that by increasing the Xanthan concentration in water, the shapes of the bouncing droplet are dramatically altered, e.g., its shape at the separation moment is changed from a conventional vertical jetting into a "mushroom"-like one. As a result, the contact time of the non-Newtonian droplet could be reduced by up to ∼50%. We compare the impact scenarios of Xanthan liquids with those of glycerol solutions having a similar apparent viscosity, and results show that the differences in the elongation viscosity induce different impact dynamics of the droplets. Finally, we show that by increasing the Weber number for all of the liquids, the contact time is reduced, and the maximum spreading radius is increased.

2.
Small ; 18(47): e2203258, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36216591

RESUMO

Hydrogel electronics have attracted growing interest for emerging applications in personal healthcare management, human-machine interaction, etc. Herein, a "doping then gelling" strategy to synthesize supramolecular PANI/PAA hydrogel with a specific strand entangled network is proposed, by doping the PANI with acrylic acid (AA) monomers to avoid PANI aggregation. The high-density electrostatic interaction between PAA and PANI chains serves as a dynamic bond to initiate the strand entanglement, enabling PAA/PANI hydrogel with ultra-stretchability (2830%), high breaking strength (120 kPa), and rapid self-healing properties. Moreover, the PAA/PANI hydrogel-based sensor with a high strain sensitivity (gauge factor = 12.63), a rapid responding time (222 ms), and a robust conductivity-based sensing behavior under cyclic stretching is developed. A set of strain sensing applications to precisely monitor human movements is also demonstrated, indicating a promising application prospect as wearable devices.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Humanos , Hidrogéis/química , Condutividade Elétrica , Eletrônica , Monitorização Fisiológica
3.
Langmuir ; 38(37): 11314-11323, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36070605

RESUMO

Ice accretion on economically valuable and strategically important surfaces poses significant challenges. Current anti-/de-icing techniques often have critical issues regarding their efficiency, convenience, long-term stability, or sustainability. As an emerging ice mitigation strategy, the thin-film surface acoustic wave (SAW) has great potentials due to its high energy efficiency and effective integration on structural surfaces. However, anti-/de-icing processes activated by SAWs involve complex interfacial evolution and phase changes, and it is crucial to understand the nature of dynamic solid-liquid-vapor phase changes and ice nucleation, growth, and melting events under SAW agitation. In this study, we systematically investigated the accretion and removal of porous rime ice from structural surfaces activated by SAWs. We found that icing and de-icing processes are strongly linked with the dynamical interfacial phase and structure changes of rime ice under SAW activation and the acousto-thermally induced localized heating that facilitate the melting of ice crystals. Subsequently, interactions of SAWs with the formed thin water layer at the ice/structure interface result in significant streaming effects that lead to further damage and melting of ice, liquid pumping, jetting, or nebulization.

4.
Langmuir ; 38(34): 10632-10641, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35977085

RESUMO

A versatile method for the creation of multitier hierarchical structured surfaces is reported, which optimizes both antiviral and hydrophobic (easy-clean) properties. The methodology exploits the availability of surface-active chemical groups while also manipulating both the surface micro- and nanostructure to control the way the surface coating interacts with virus particles within a liquid droplet. This methodology has significant advantages over single-tier structured surfaces, including the ability to overcome the droplet-pinning effect and in delivering surfaces with high static contact angles (>130°) and good antiviral efficacy (log kill >2). In addition, the methodology highlights a valuable approach for the creation of mechanically robust, nanostructured surfaces which can be prepared by spray application using nonspecialized equipment.


Assuntos
Antivirais , Nanoestruturas , Antivirais/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Propriedades de Superfície
5.
Sensors (Basel) ; 22(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746129

RESUMO

The key challenge for a lab-on-chip (LOC) device is the seamless integration of key elements of biosensing and actuation (e.g., biosampling or microfluidics), which are conventionally realised using different technologies. In this paper, we report a convenient and efficient LOC platform fabricated using an electrode patterned flexible printed circuit board (FPCB) pressed onto a piezoelectric film coated substrate, which can implement multiple functions of both acoustofluidics using surface acoustic waves (SAWs) and sensing functions using electromagnetic metamaterials, based on the same electrode on the FPCB. We explored the actuation capability of the integrated structure by pumping a sessile droplet using SAWs in the radio frequency range. We then investigated the hybrid sensing capability (including both physical and chemical ones) of the structure employing the concept of electromagnetic split-ring resonators (SRRs) in the microwave frequency range. The originality of this sensing work is based on the premise that the proposed structure contains three completely decoupled resonant frequencies for sensing applications and each resonance has been used as a separate physical or a chemical sensor. This feature compliments the acoustofluidic capability and is well-aligned with the goals set for a successful LOC device.


Assuntos
Microfluídica , Som , Ondas de Rádio , Vibração
6.
Biophys J ; 120(5): 866-876, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33515600

RESUMO

Rac1 is a small member of the Rho GTPase family. One of the most important downstream effectors of Rac1 is a serine/threonine kinase, p21-activated kinase 1 (PAK1). Mutational activation of PAK1 by Rac1 has oncogenic signaling effects. Here, although we focus on Rac1-PAK1 interaction by atomic-force-microscopy-based single-molecule force spectroscopy experiments, we explore the effect of active mutations on the intrinsic dynamics and binding interactions of Rac1 by Gaussian network model analysis and molecular dynamics simulations. We observe that Rac1 oncogenic mutations are at the hinges of three global modes of motion, suggesting the mechanical changes as potential markers of oncogenicity. Indeed, the dissociation of wild-type Rac1-PAK1 complex shows two distinct unbinding dynamic states that are reduced to one with constitutively active Q61L and oncogenic Y72C mutant Rac1, as revealed by single-molecule force spectroscopy experiments. Q61L and Y72C mutations change the mechanics of the Rac1-PAK1 complex by increasing the elasticity of the protein and slowing down the transition to the unbound state. On the other hand, Rac1's intrinsic dynamics reveal more flexible GTP and PAK1-binding residues on switches I and II with Q61L, Y72C, oncogenic P29S and Q61R, and negative T17N mutations. The cooperativity in the fluctuations of GTP-binding sites around the p-loop and switch I decreases in all mutants, mostly in Q61L, whereas some PAK1-binding residues display enhanced coupling with GTP-binding sites in Q61L and Y72C and within each other in P29S. The predicted binding free energies of the modeled Rac1-PAK1 complexes show that the change in the dynamic behavior likely means a more favorable PAK1 interaction. Overall, these findings suggest that the active mutations affect intrinsic functional dynamic events and alter the mechanics underlying the binding of Rac1 to GTP and upstream and downstream partners including PAK1.


Assuntos
Quinases Ativadas por p21 , Proteínas rac1 de Ligação ao GTP , Guanosina Trifosfato , Mutação , Transdução de Sinais , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
Sensors (Basel) ; 21(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921846

RESUMO

The deterioration of gait can be used as a biomarker for ageing and neurological diseases. Continuous gait monitoring and analysis are essential for early deficit detection and personalized rehabilitation. The use of mobile and wearable inertial sensor systems for gait monitoring and analysis have been well explored with promising results in the literature. However, most of these studies focus on technologies for the assessment of gait characteristics, few of them have considered the data acquisition bandwidth of the sensing system. Inadequate sampling frequency will sacrifice signal fidelity, thus leading to an inaccurate estimation especially for spatial gait parameters. In this work, we developed an inertial sensor based in-shoe gait analysis system for real-time gait monitoring and investigated the optimal sampling frequency to capture all the information on walking patterns. An exploratory validation study was performed using an optical motion capture system on four healthy adult subjects, where each person underwent five walking sessions, giving a total of 20 sessions. Percentage mean absolute errors (MAE%) obtained in stride time, stride length, stride velocity, and cadence while walking were 1.19%, 1.68%, 2.08%, and 1.23%, respectively. In addition, an eigenanalysis based graphical descriptor from raw gait cycle signals was proposed as a new gait metric that can be quantified by principal component analysis to differentiate gait patterns, which has great potential to be used as a powerful analytical tool for gait disorder diagnostics.


Assuntos
Análise da Marcha , Sapatos , Adulto , Envelhecimento , Marcha , Humanos , Caminhada
8.
Nano Lett ; 20(5): 3263-3270, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32233442

RESUMO

The ability to actuate liquids remains a fundamental challenge in smart microsystems, such as those for soft robotics, where devices often need to conform to either natural or three-dimensional solid shapes, in various orientations. Here, we propose a hierarchical nanotexturing of piezoelectric films as active microfluidic actuators, exploiting a unique combination of both topographical and chemical properties on flexible surfaces, while also introducing design concepts of shear hydrophobicity and tensile hydrophilicity. In doing so, we create nanostructured surfaces that are, at the same time, both slippery (low in-plane pinning) and sticky (high normal-to-plane liquid adhesion). By enabling fluid transportation on such arbitrarily shaped surfaces, we demonstrate efficient fluid motions on inclined, vertical, inverted, or even flexible geometries in three dimensions. Such surfaces can also be deformed and then reformed into their original shapes, thereby paving the way for advanced microfluidic applications.

9.
Langmuir ; 36(34): 10175-10186, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32787026

RESUMO

Droplet impact on arbitrary inclined surfaces is of great interest for applications such as antifreezing, self-cleaning, and anti-infection. Research has been focused on texturing the surfaces to alter the contact time and rebouncing angle upon droplet impact. In this paper, using propagating surface acoustic waves (SAWs) along the inclined surfaces, we present a novel technique to modify and control key droplet impact parameters, such as impact regime, contact time, and rebouncing direction. A high-fidelity finite volume method was developed to explore the mechanisms of droplet impact on the inclined surfaces assisted by SAWs. Numerical results revealed that applying SAWs modifies the energy budget inside the liquid medium, leading to different impact behaviors. We then systematically investigated the effects of inclination angle, droplet impact velocity, SAW propagation direction, and applied SAW power on the impact dynamics and showed that by using SAWs, droplet impact on the nontextured hydrophobic and inclined surface is effectively changed from deposition to complete rebound. Moreover, the maximum contact time reduction up to ∼50% can be achieved, along with an alteration of droplet spreading and movement along the inclined surfaces. Finally, we showed that the rebouncing angle along the inclined surface could be adjusted within a wide range.

10.
Opt Express ; 26(4): 4906-4919, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475334

RESUMO

This study presents a simulation-based analysis on the excitation of microcantilever in air using pulsed-laser-induced photoacoustic waves. A model was designed and coded to investigate the effects of consecutive photoacoustic waves, arising from a spherical light absorber illuminated by short laser pulses. The consecutiveness of the waves were adjusted with respect to the pulse repetition frequency of the laser to examine their cumulative effects on the oscillation of microcantilever. Using this approach, oscillation characteristics of two rectangular cantilevers with different resonant frequencies (16.9 kHz and 505.7 kHz) were investigated in the presence of the random oscillations. The results show that the effective responses of the microcantilevers to the consecutive photoacoustic waves provide steady-state oscillations, when the pulse repetition frequency matches to the fundamental resonant frequency or its lower harmonics. Another major finding is that being driven by the same photoacoustic pressure value, the high frequency cantilever tend to oscillate at higher amplitudes. Some of the issues emerging from these findings may find application area in atomic force microscopy actuation and photoacoustic signal detection.

11.
Biomed Microdevices ; 17(5): 85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26238733

RESUMO

Vitrectomy is a standard ophthalmic procedure to remove the vitreous body from the eye. The biomechanics of the vitreous affects its duration (by changing the removal rate) and the mechanical forces transmitted via the vitreous on the surrounding tissues during the procedure. Biomechanical characterization of the vitreous is essential for optimizing the design and control of instruments that operate within the vitreous for improved precision, safety, and efficacy. The measurements are carried out using a magnetic microprobe inserted into the vitreous, a method known as magnetic microrheology. The location of the probe is tracked by a microscope/camera while magnetic forces are exerted wirelessly by applied magnetic fields. In this work, in vitro artificial vitreous, ex vivo human vitreous and ex vivo porcine vitreous were characterized. In addition, in vivo rabbit measurements were performed using a suturelessly injected probe. Measurements indicate that viscoelasticity parameters of the ex vivo human vitreous are an order of magnitude different from those of the ex vivo porcine vitreous. The in vivo intra-operative measurements show typical viscoelastic behavior of the vitreous with a lower compliance than the ex vivo measurements. The results of the magnetic microrheology measurements were validated with those obtained by a standard atomic force microscopy (AFM) method and in vitro artificial vitreous. This method allows minimally-invasive characterization of localized mechanical properties of the vitreous in vitro, ex vivo, and in vivo. A better understanding of the characteristics of the vitreous can lead to improvements in treatments concerning vitreal manipulation such as vitrectomy.


Assuntos
Técnicas de Diagnóstico Oftalmológico/instrumentação , Separação Imunomagnética/instrumentação , Sistemas Microeletromecânicos/instrumentação , Técnicas de Sonda Molecular/instrumentação , Reologia/instrumentação , Corpo Vítreo/fisiologia , Animais , Módulo de Elasticidade/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Imãs , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico , Viscosidade , Corpo Vítreo/química
12.
Sci Rep ; 14(1): 12448, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816398

RESUMO

Precise control of microparticle movement is crucial in high throughput processing for various applications in scalable manufacturing, such as particle monolayer assembly and 3D bio-printing. Current techniques using acoustic, electrical and optical methods offer precise manipulation advantages, but their scalability is restricted due to issues such as, high input powers and complex fabrication and operation processes. In this work, we introduce the concept of capillary wave tweezers, where mm-scale capillary wave fields are dynamically manipulated to control the position of microparticles in a liquid volume. Capillary waves are generated in an open liquid volume using low frequency vibrations (in the range of 10-100 Hz) to trap particles underneath the nodes of the capillary waves. By shifting the displacement nodes of the waves, the trapped particles are precisely displaced. Using analytical and numerical models, we identify conditions under which a stable control over particle motion is achieved. By showcasing the ability to dynamically control the movement of microparticles, our concept offers a simple and high throughput method to manipulate particles in open systems.

13.
Sci Adv ; 10(22): eadk8357, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809971

RESUMO

Nanomechanical measurements, especially the detection of weak contact forces, play a vital role in many fields, such as material science, micromanipulation, and mechanobiology. However, it remains a challenging task to realize the measurement of ultraweak force levels as low as nanonewtons with a simple sensing configuration. In this work, an ultrasensitive all-fiber nanonewton force sensor structure based on a single-mode-tapered U-shape multimode-single-mode fiber probe is proposed and experimentally demonstrated with a limit of detection of ~5.4 nanonewtons. The use of the sensor is demonstrated by force measurement on a human hair sample to determine the spring constant of the hair. The results agree well with measurements using an atomic force microscope for the spring constant of the hair. Compared with other force sensors based on optical fiber in the literature, the proposed all-fiber force sensor provides a substantial advancement in the minimum detectable force possible, with the advantages of a simple configuration, ease of fabrication, and low cost.

14.
Cont Lens Anterior Eye ; 47(2): 102102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114379

RESUMO

Glaucoma is a leading cause of blindness with no cure, but early treatment and effective monitoring can often slow the progression of the disease. Monitoring of glaucoma is based on the measurement of intra-ocular pressure (IOP) that is a physiological parameter related to the mechanical state and parameters of the eye. Conventionally, diagnosing and assessing the progression of glaucoma is based on the method of measuring IOP discretely at clinics. Recent studies have demonstrated the importance of continuously monitoring IOP for 24 h to elucidate the effect of circadian rhythm. In this work, a metamaterial-inspired electrically-passive sensor-embedded contact lens is presented to monitor the IOP fluctuations based on a first-in-human pilot study. The sensor inside the contact lens is an electrically passive, metamaterial-based resonator that can be measured using a wearable antenna patch. The system has been tested with six healthy volunteers during an experiment to induce deliberate IOP changes via water-loading and placing the individuals in supine position using a recliner seat. The initial data compared with tonometer measurements suggest that the system can be used to assess the variation of IOP continuously.


Assuntos
Lentes de Contato , Glaucoma , Humanos , Pressão Intraocular , Projetos Piloto , Tonometria Ocular/métodos , Glaucoma/diagnóstico
15.
Carbohydr Polym ; 304: 120482, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641190

RESUMO

Bacterial cellulose (BC) has been explored for use in a range of applications including tissue engineering and textiles. BC can be produced from waste streams, but sustainable approaches are needed for functionalisation. To this end, BslA, a B. subtilis biofilm protein was produced recombinantly with and without a cellulose binding module (CBM) and the cell free extract was used to treat BC either ex-situ, through drip coating or in-situ, by incorporating during fermentation. The results showed that ex-situ modified BC increased the hydrophobicity and water contact angle reached 120°. In-situ experiments led to a BC film morphological change and mechanical testing demonstrated that addition of BslA with CBM resulted in a stronger, more elastic material. This study presents a nature inspired approach to functionalise BC using a biofilm hydrophobin, and we demonstrate that recombinant proteins could be effective and sustainable molecules for functionalisation of BC materials.


Assuntos
Bactérias , Celulose , Celulose/química , Bactérias/metabolismo , Engenharia Tecidual , Fermentação
16.
Mater Horiz ; 10(8): 2800-2823, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204005

RESUMO

Hydrogels have been attracting increasing attention for application in wearable electronics, due to their intrinsic biomimetic features, highly tunable chemical-physical properties (mechanical, electrical, etc.), and excellent biocompatibility. Among many proposed varieties of hydrogels, conductive polymer-based hydrogels (CPHs) have emerged as a promising candidate for future wearable sensor designs, with capability of realizing desired features using different tuning strategies ranging from molecular design (with a low length scale of 10-10 m) to a micro-structural configuration (up to a length scale of 10-2 m). However, considerable challenges remain to be overcome, such as the limited strain sensing range due to the mechanical strength, the signal loss/instability caused by swelling/deswelling, the significant hysteresis of sensing signals, the de-hydration induced malfunctions, and the surface/interfacial failure during manufacturing/processing. This review aims to offer a targeted scan of recent advancements in CPH based wearable sensor technology, from the establishment of dedicated structure-property relationships in the lab to the advanced manufacturing routes for potential scale-up production. The application of CPHs in wearable sensors is also explored, with suggested new research avenues and prospects for CPHs in the future also included.

17.
Talanta ; 257: 124385, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827941

RESUMO

A critical challenge to realize ultra-high sensitivity with optical fiber interferometers for label free biosensing is to achieve high quality factors (Q-factor) in liquid. In this work a high Q-factor of 105, which significantly improves the detection resolution is described based on a structure of single mode -core-only -single mode fiber (SCS) with its multimode (or Mach-Zehnder) interference effect as a filter that is integrated into an erbium-doped fiber laser (EDFL) system for excitation. In the case study, the section of core-only fiber is functionalized with porcine immunoglobulin G (IgG) antibodies, which could selectively bind to bacterial pathogen of Staphylococcus aureus (S. aureus). The developed microfiber-based biosensing platform called SCS-based EDFL biosensors can effectively detect concentrations of S. aureus from 10 to 105 CFU/mL, with a responsivity of 0.426 nm wavelength shift in the measured spectrum for S. aureus concentration of 10 CFU/mL. The limit of detection (LoD) is estimated as 7.3 CFU/mL based on the measurement of S. aureus with minimum concentration of 10 CFU/mL. In addition, when a lower concentration of 1 CFU/mL is applied to the biosensor, a wavelength shift of 0.12 nm is observed in 10% of samples (1/10), indicating actual LoD of 1 CFU/mL for the proposed biosensor. Attributed to its good sensitivity, stability, reproducibility and specificity, the proposed EDFL based biosensing platform has great potentials for diagnostics.


Assuntos
Técnicas Biossensoriais , Infecções Estafilocócicas , Animais , Suínos , Staphylococcus aureus , Érbio , Reprodutibilidade dos Testes , Imunoglobulina G , Lasers
18.
ACS Appl Mater Interfaces ; 15(29): 35648-35663, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432769

RESUMO

Moisture condensation, fogging, and frost or ice formation on structural surfaces cause severe hazards in many industrial components such as aircraft wings, electric power lines, and wind-turbine blades. Surface-acoustic-wave (SAW) technology, which is based on generating and monitoring acoustic waves propagating along structural surfaces, is one of the most promising techniques for monitoring, predicting, and also eliminating these hazards occurring on these surfaces in a cold environment. Monitoring condensation and frost/ice formation using SAW devices is challenging in practical scenarios including sleet, snow, cold rain, strong wind, and low pressure, and such a detection in various ambient conditions can be complex and requires consideration of various key influencing factors. Herein, the influences of various individual factors such as temperature, humidity, and water vapor pressure, as well as combined or multienvironmental dynamic factors, are investigated, all of which lead to either adsorption of water molecules, condensation, and/or frost/ice in a cold environment on the SAW devices. The influences of these parameters on the frequency shifts of the resonant SAW devices are systematically analyzed. Complemented with experimental studies and data from the literature, relationships among the frequency shifts and changes of temperature and other key factors influencing the dynamic phase transitions of water vapor on SAW devices are investigated to provide important guidance for icing detection and monitoring.

19.
Anal Chim Acta ; 1255: 341120, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37032048

RESUMO

Acoustofluidic devices becomes one of the emerging and versatile tools for many biomedical applications. Most of the previous acoustofluidic devices are used for cells manipulation, and the few devices for cell phenotyping with a limitation in throughput. In this study, an enhanced tilted-angle (ETA) acoustofluidic device is developed and applied for mechanophenotyping of live cells. The ETA Device consists of an interdigital transducer which is positioned along a microfluidic channel. An inclination angle of 5° is introduced between the interdigital transducer and the liquid flow direction. The pressure nodes formed inside the acoustofluidic field in the channel deflect the biological cells from their original course in accordance with their mechanical properties, including volume, compressibility, and density. The threshold power for fully converging the cells to the pressure node is used to calculate the acoustic contrast factor. To demonstrate the ETA device in cell mechanophenotyping, and distinguishing between different cell types, further experimentation is carried out by using A549 (lung cancer cells), MDB-MA-231 (breast cancer cells), and leukocytes. The resulting acoustic contrast factors for the lung and breast cancer cells are different from that of the leukocytes by 27.9% and 21.5%, respectively. These results suggest this methodology can successfully distinguish and phenotype different cell types based on the acoustic contrast factor.


Assuntos
Acústica , Neoplasias , Microfluídica/métodos , Som , Leucócitos , Transdutores , Dispositivos Lab-On-A-Chip
20.
Artigo em Inglês | MEDLINE | ID: mdl-37015703

RESUMO

Detecting gait phases with wearables unobtrusively and reliably in real-time is important for clinical gait rehabilitation and early diagnosis of neurological diseases. Due to hardware limitations of microcontrollers in wearable devices (e.g., memory and computation power), reliable real-time gait phase detection on the microcontrollers remains a challenge, especially for long-term real-world free-living gait. In this work, a novel algorithm based on a reduced support vector machine (RSVM) and a finite state machine (FSM) is developed to address this. The RSVM is developed by exploiting the cascaded K-means clustering to reduce the model size and computation time of a standard SVM by 88% and a factor of 36, with only minor degradation in gait phase prediction accuracy of around 4%. For each gait phase prediction from the RSVM, the FSM is designed to validate the prediction and correct misclassifications. The developed algorithm is implemented on a microcontroller of a wearable device and its real-time (on the fly) classification performance is evaluated by twenty healthy subjects walking along a predefined real-world route with uncontrolled free-living gait. It shows a promising real-time performance with an accuracy of 91.51%, a sensitivity of 91.70%, and a specificity of 95.77%. The algorithm also demonstrates its robustness with varying walking conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa