Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 327(2): F314-F326, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38932694

RESUMO

Perinatal asphyxia (PA) poses a significant threat to multiple organs, particularly the kidneys. Diagnosing PA-associated kidney injury remains challenging, and treatment options are inadequate. Furthermore, there is a lack of long-term follow-up data regarding the renal implications of PA. In this study, 7-day-old male Wistar rats were exposed to PA using a gas mixture (4% O2; 20% CO2 in N2 for 15 min) to investigate molecular pathways linked to renal tubular damage, hypoxia, angiogenesis, heat shock response, inflammation, and fibrosis in the kidney. In a second experiment, adult rats with a history of PA were subjected to moderate renal ischemia-reperfusion (IR) injury to test the hypothesis that PA exacerbates renal susceptibility. Our results revealed an increased gene expression of renal injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), hypoxic and heat shock factors (hypoxia-inducible factor-1α, heat shock factor-1, and heat shock protein-27), proinflammatory cytokines (interleukin-1ß, interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1), and fibrotic markers (transforming growth factor-ß, connective tissue growth factor, and fibronectin) promptly after PA. Moreover, a machine learning model was identified through random forest analysis, demonstrating an impressive classification accuracy (95.5%) for PA. Post-PA rats showed exacerbated functional decline and tubular injury and more intense hypoxic, heat shock, proinflammatory, and profibrotic response after renal IR injury compared with controls. In conclusion, PA leads to subclinical kidney injury, which may increase the susceptibility to subsequent renal damage later in life. In addition, the parameters identified through random forest analysis provide a robust foundation for future biomarker research in the context of PA.NEW & NOTEWORTHY This article demonstrates that perinatal asphyxia leads to subclinical kidney injury that permanently increases renal susceptibility to subsequent ischemic injury. We identified major molecular pathways involved in perinatal asphyxia-induced renal complications, highlighting potential targets of therapeutic approaches. In addition, random forest analysis revealed a model that classifies perinatal asphyxia with 95.5% accuracy that may provide a strong foundation for further biomarker research. These findings underscore the importance of multiorgan follow-up for perinatal asphyxia-affected patients.


Assuntos
Injúria Renal Aguda , Modelos Animais de Doenças , Rim , Ratos Wistar , Traumatismo por Reperfusão , Animais , Masculino , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Rim/patologia , Rim/metabolismo , Fibrose , Asfixia Neonatal/metabolismo , Asfixia Neonatal/complicações , Asfixia Neonatal/patologia , Animais Recém-Nascidos , Ratos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Citocinas/metabolismo , Fatores Etários , Mediadores da Inflamação/metabolismo
2.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511389

RESUMO

Kidney transplantation is the preferred treatment for patients with end-stage kidney disease. Maintaining organ viability between donation and transplantation, as well as minimizing ischemic injury, are critically important for long-term graft function and survival. Moreover, the increasing shortage of transplantable organs is a considerable problem; thus, optimizing the condition of grafts is a pivotal task. Here, rodent models of kidney transplantation and cold storage were used to demonstrate that supplementation of a preservation solution with Sigma-1 receptor (S1R) agonist fluvoxamine (FLU) reduces cold and warm ischemic injury. Post-transplant kidney function was improved, histological injury was mitigated, and mRNA expression of two tubular injury markers-kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin-was robustly reduced. In addition, renal inflammation was diminished, as shown by reduced leukocyte infiltration and pro-inflammatory cytokine expression. In the cold ischemia model, FLU ameliorated structural injury profoundly after 2 h as well as 24 h. The reduced number of TUNEL-positive and Caspase 3-positive cells suggests the anti-apoptotic effect of FLU. None of these beneficial effects of FLU were observed in S1R-/- mice. Of note, organ damage in FLU-treated kidneys after 24 h of cold storage was similar to just 2 h without FLU. These results indicate that S1R agonists can prolong storage time and have great potential in improving organ preservation and in alleviating the problem of organ shortages.


Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Camundongos , Animais , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Roedores , Traumatismo por Reperfusão/patologia , Rim/patologia , Preservação de Órgãos/métodos , Isquemia/patologia , Temperatura Baixa , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa