Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 104(1): e21659, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31976584

RESUMO

Ferritin is a ubiquitous and conserved iron storage protein that plays a significant role in host detoxification, iron storage, and immune response. Although ferritin has been studied in many species, little is known about its role in the Eri-silkworm (Samia cynthia ricini). In this study, the ferritin light-chain subunit gene, named ScFerLCH, was identified from S. c. ricini. The full-length gene, ScFerLCH, was 1,155 bp and encoded a protein consisting of 231 amino acids with a deduced molecular weight of 26.38 kDa. Higher ScFerLCH expression levels were found in the midgut, silk gland, and fat body by quantitative reverse-transcription polymerase chain reaction and western blot analysis. Injection of Staphylococcus aureus and Pseudomonas aeruginosa could induce upregulation of ScFerLCH in the hemolymph, fat body, and midgut, indicating that ScFerLCH may contribute to the host defense against invading pathogens. In addition, the native ferritin protein was isolated from S. c. ricini by native polyacrylamide gel electrophoresis and its two subunits, ferritin heavy-chain subunit (ScFerHCH) and ferritin light-chain subunit (ScFerLCH), were identified by mass spectrometry. Specifically, we found that recombinant ferritin subunits could self-assemble into a protein complex in vitro; moreover, both recombinant subunits and the protein complex were found to bind different bacteria, including Escherichia coli, P. aeruginosa, S. aureus, and Bacillus subtilis. However, bactericidal tests showed that the protein complex could not inhibit the growth of bacteria directly. Taken together, our results suggest that ScFerritin might play an important role in mediating molecular interaction with pathogens.


Assuntos
Ferritinas/química , Mariposas/genética , Mariposas/microbiologia , Sequência de Aminoácidos , Animais , Bactérias/imunologia , Ferritinas/genética , Ferritinas/metabolismo , Imunidade Inata , Proteínas de Insetos , Ferro/metabolismo , Larva/genética , Larva/metabolismo , Larva/microbiologia , Mariposas/imunologia , Mariposas/metabolismo
2.
Int J Mol Sci ; 21(2)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968548

RESUMO

DNA modification is a naturally occurring DNA modification in prokaryotic and eukaryotic organisms and is involved in several biological processes. Although genome-wide methylation has been studied in many insects, the understanding of global and genomic DNA methylation during insect early embryonic development, is lacking especially for insect diapause. In this study, we analyzed the relationship between DNA methylomes and transcriptomes in diapause-destined eggs compared to diapause-terminated eggs in the silkworm, Bombyx mori (B. mori). The results revealed that methylation was sparse in this species, as previously reported. Moreover, methylation levels in diapause-terminated eggs (HCl-treated) were 0.05% higher than in non-treated eggs, mainly due to the contribution of CG methylation sites. Methylation tends to occur in the coding sequences and promoter regions, especially at transcription initiation sites and short interspersed elements. Additionally, 364 methylome- and transcriptome-associated genes were identified, which showed significant differences in methylation and expression levels in diapause-destined eggs when compared with diapause-terminated eggs, and 74% of methylome and transcriptome associated genes showed both hypermethylation and elevated expression. Most importantly, Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses showed that methylation may be positively associated with Bombyx mori embryonic development, by regulating cell differentiation, metabolism, apoptosis pathways and phosphorylation. Through analyzing the G2/M phase-specific E3 ubiquitin-protein ligase (G2E3), we speculate that methylation may affect embryo diapause by regulating the cell cycle in Bombyx mori. These findings will help unravel potential linkages between DNA methylation and gene expression during early insect embryonic development and insect diapause.


Assuntos
Bombyx/genética , Metilação de DNA , Diapausa de Inseto/genética , Epigenoma , Transcriptoma , Animais , Bombyx/embriologia , Bombyx/fisiologia , Desenvolvimento Embrionário/genética , Feminino , Proteínas de Insetos , Óvulo , Fosforilação
3.
Arch Insect Biochem Physiol ; 100(3): e21529, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30588651

RESUMO

DNA methylation is one of the most widespread epigenetic marks and has been linked to insect development, especially influencing embryonic development. However, the regulation of DNA methylation in silkworm embryonic development and diapause remain to investigate. In this study, reverse-transcription quantitative polymerase chain reaction was performed to identify the expression level of Bombyx mori DNA methyltransferases (BmDNMTs) 1 and 2 ( BmDnmt1 and BmDnmt2) in different tissues, different embryonic developmental stages, and different strains of the silkworm. The results showed that BmDNMTs were the most highly expressed during embryonic development, especially at early embryonic stages. In particular, the expression of BmDNMTs was significantly upregulated in diapause-terminated eggs by HCl treatment. Moreover, tissue distribution showed that BmDnmt2 was highly expressed in testis and ovary, and BmDnmt1 was highly expressed in testis. This study contributes to understanding the correlation of DNA methylation occurs with embryogenesis and gametogenesis in insect, meanwhile, it provides a research orientation to further analyze the role of DNA methylation in diapause initiation and termination in insect embryonic development.


Assuntos
Bombyx/genética , Desenvolvimento Embrionário/genética , Proteínas de Insetos/genética , Metiltransferases/genética , Animais , Bombyx/embriologia , Bombyx/enzimologia , Metilação de DNA , Diapausa de Inseto/fisiologia , Perfilação da Expressão Gênica , Proteínas de Insetos/metabolismo , Metiltransferases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Arch Insect Biochem Physiol ; 102(1): e21592, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31276235

RESUMO

Ferritin, which is ubiquitous among all living organisms, plays a crucial role in maintaining iron homeostasis, immune response, and detoxification. In the present research, we identified an iron-binding protein, ferritin heavy chain subunit, from Papilio xuthus and named PxFerHCH. The complete complementary DNA of PxFerHCH was 1,252 bp encoding a sequence of 211 amino acids, which includes an iron-responsive element. Phylogenetic analysis showed that PxFerHCH is clustered with Manduca sexta and Galleria mellonella ferritin heavy chain subunits. Expression levels of PxFerHCH in various tissues were analyzed by reverse transcription quantitative polymerase chain reaction, and the results exhibited that PxFerHCH was expressed in all tissues with the highest expression in the fat body. The relative expression level of PxFerHCH in response to bacterial (Escherichia coli and Staphylococcus aureus) challenges sharply increased by about 12 hr postinfection (hpi) and then decreased at 24 hpi. In addition, the iron-binding capacity and antioxidation activity of recombinant PxFerHCH protein were also investigated. These results reveal that PxFerHCH might play an important role in defense against bacterial infection.


Assuntos
Apoferritinas/metabolismo , Borboletas/metabolismo , Ferro/metabolismo , Sequência de Aminoácidos , Animais , Apoferritinas/genética , Apoferritinas/isolamento & purificação , Sequência de Bases , Borboletas/genética , Borboletas/imunologia , Escherichia coli , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Staphylococcus aureus
5.
J Insect Sci ; 19(1)2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715437

RESUMO

Proteins p38 map kinase and ribosomal S6 kinase (S6K) as members of mitogen-activated protein kinases (MAPKs) play important roles against pathogens. In this study, Bmp38 and BmS6K were identified as differentially expressed proteins from iTRAQ database. Bmp38 and BmS6K were expressed, and recombinant proteins were purified. The bioinformatics analysis showed that both proteins have serine/threonine-protein kinases, catalytic domain (S_TKc) with 360 and 753 amino acids, respectively. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that Bmp38 and BmS6K had high expression in the midgut and hemolymph. The comparative expression level of Bmp38 and BmS6K in BC9 was upregulated than in P50 in the midgut after Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Western bolt results showed a positive correlation between RT-qPCR and iTRAQ data for Bmp38, but BmS6K data showed partial correlation with iTRAQ. Injection of anti-Bmp38 and anti-BmS6K serum suggested that Bmp38 may be involved against BmNPV infection, whereas BmS6K may require phosphorylation modification to inhibit BmNPV infection. Taken together, our results suggest that Bmp38 and BmS6k might play an important role in innate immunity of silkworm against BmNPV.


Assuntos
Bombyx/genética , Proteínas de Insetos/genética , Nucleopoliedrovírus/fisiologia , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bombyx/crescimento & desenvolvimento , Bombyx/imunologia , Bombyx/virologia , Imunidade Inata/genética , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/virologia , Filogenia , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/metabolismo , Alinhamento de Sequência , Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861829

RESUMO

Chitin deacetylase (CDA) is a chitin degradation enzyme that strictly catalyzes the deacetylation of chitin to form chitosan, which plays an important role in regulating growth and development, as well as the immune response. In this study, a chitin deacetylase 3 gene (CDA3) was identified with a complete open reading frame (ORF) of 1362 bp from the genome database of Diaphorina citri, encoding a protein of 453 amino acids. Spatiotemporal expression analysis suggested that D. citri CDA3 (DcCDA3) had the highest expression level in the integument and third-instar nymph stage. Furthermore, DcCDA3 expression level can be induced by 20-hydroxyecdysone (20E). Injection of Escherichia coli and Staphylococcus aureus induced the upregulation of DcCDA3 in the midgut, while DcCDA3 was downregulated in the fat body. After silencing DcCDA3 by RNA interference, there was no influence on the D. citri phenotype. In addition, bactericidal tests showed that recombinant DcCDA3 inhibited gram-positive bacteria, including S. aureus and Bacillus subtilis (B. subtilis). In conclusion, our results suggest that DcCDA3 might play an important role in the immune response of D. citri.


Assuntos
Amidoidrolases/imunologia , Hemípteros/imunologia , Proteínas de Insetos/imunologia , Amidoidrolases/química , Amidoidrolases/genética , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/imunologia , Hemípteros/química , Hemípteros/genética , Imunidade , Proteínas de Insetos/química , Proteínas de Insetos/genética , Transcriptoma
7.
J Invertebr Pathol ; 159: 61-70, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30347207

RESUMO

Apolipophorin-III (ApoLp-III) is an abundant hemolymph protein mainly involved in lipid transport and innate immunity in insects. In the present study, the gene Samia cynthia ricini ApoLp-III (ScApoLp-III) was identified from a transcriptome database, and contained 790 nucleotides with a putative open reading frame (ORF) of 561 bp encoding 186 amino acid residues. Phylogenetic analysis revealed that ScApoLp-III had significant homology with ApoLp-III protein from Antheraea pernyi. Higher ScApoLp-III expression levels were found in the fat body and silk gland by reverse transcription quantitative PCR (RT-qPCR). Injection of Staphylococcus aureus induced up-regulation of ScApoLp-III in the midgut, fat body and hemocytes. However, ScApoLp-III was down-regulated in the midgut and fat body after Pseudomonas aeruginosa injection, indicating that ScApoLp-III may contribute to the host's defense against invading pathogens. Additionally, recombinant ScApoLp-III was found to bind different bacteria, including E. coli, P. aeruginosa, S. aureus and B. subtilis. Bactericidal tests showed that recombinant ScApoLp-III strongly inhibited Gram-negative bacteria, including Escherichia coli and P. aeruginosa. However, it had no obvious influence on Gram-positive bacteria. Taken together, our results suggest that the ScApoLp-III might play an important role in the innate immunity of S. c. ricini.


Assuntos
Apolipoproteínas/genética , Apolipoproteínas/imunologia , Bombyx/genética , Bombyx/imunologia , Animais , Imunidade Inata/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia
8.
Front Immunol ; 14: 905467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818375

RESUMO

Multicellular organisms live in environments containing diverse nutrients and a wide variety of microbial communities. On the one hand, the immune response of organisms can protect from the intrusion of exogenous microorganisms. On the other hand, the dynamic coordination of anabolism and catabolism of organisms is a necessary factor for growth and reproduction. Since the production of an immune response is an energy-intensive process, the activation of immune cells is accompanied by metabolic transformations that enable the rapid production of ATP and new biomolecules. In insects, the coordination of immunity and metabolism is the basis for insects to cope with environmental challenges and ensure normal growth, development and reproduction. During the activation of insect immune tissues by pathogenic microorganisms, not only the utilization of organic resources can be enhanced, but also the activated immune cells can usurp the nutrients of non-immune tissues by generating signals. At the same time, insects also have symbiotic bacteria in their body, which can affect insect physiology through immune-metabolic regulation. This paper reviews the research progress of insect immune-metabolism regulation from the perspective of insect tissues, such as fat body, gut and hemocytes. The effects of microorganisms (pathogenic bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism were elaborated here, which provide guidance to uncover immunometabolism mechanisms in insects and mammals. This work also provides insights to utilize immune-metabolism for the formulation of pest control strategies.


Assuntos
Insetos , Microbiota , Animais , Insetos/metabolismo , Bactérias , Controle de Pragas , Simbiose , Mamíferos
9.
Pest Manag Sci ; 79(8): 2762-2779, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36914429

RESUMO

BACKGROUND: The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) can infest over 300 plant species and cause huge economic losses. Beauveria bassiana (Hypocreales: Clavicipitaceae) is one of the most widely used entomopathogenic fungi (EPF). Unfortunately, the efficacy of B. bassiana against S. frugiperda is quite low. Hypervirulent EPF isolates can be obtained by ultraviolet (UV)-irradiation. Here we report on the UV-induced mutagenesis and transcriptomic analysis of B. bassiana. RESULTS: The wild-type (WT) B. bassiana (ARSEF2860) was exposed to UV light to induce mutagenesis. Two mutants (named 6M and 8M) showed higher growth rates, conidial yields, and germination rates compared to the WT strain. The mutants showed higher levels of tolerance to osmotic, oxidative, and UV stresses. The mutants showed higher protease, chitinase, cellulose, and chitinase activities than WT. Both WT and mutants were compatible with the insecticides matrine, spinetoram, and chlorantraniliprole, but incompatible with emamectin benzoate. Insect bioassays showed that both mutants were more virulent against S. frugiperda and the greater wax moth Galleria mellonella. Transcriptomic profiles of the WT and mutants were determined by RNA-sequencing. The differentially expressed genes (DEGs) were identified. The gene set enrichment analysis (GSEA), protein-protein interaction (PPI) network, and hub gene analysis revealed virulence-related genes. CONCLUSION: Our data demonstrate that UV-irradiation is a very efficient and economical technique to improve the virulence and stress resistance of B. bassiana. Comparative transcriptomic profiles of the mutants provide insights into virulence genes. These results provide new ideas for improving the genetic engineering and field efficacy of EPF. © 2023 Society of Chemical Industry.


Assuntos
Beauveria , Hypocreales , Mariposas , Animais , Hypocreales/genética , Beauveria/genética , Transcriptoma , Mariposas/genética , Mutagênese
10.
Pest Manag Sci ; 78(11): 4517-4532, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35810341

RESUMO

BACKGROUND: Chlorantraniliprole (CAP) is an efficient anthranilic diamide insecticide against economically important pests such as the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Resistance to CAP may develop due to enhanced enzymatic detoxification. The glutathione S-transferase (GST) superfamily in M. separata has not been systematically characterized. The aim of this study was therefore to explore the effects of lethal and sublethal doses of CAP on M. separata larvae, screen differentially expressed genes (DEGs) responding to CAP exposure, identify and characterize the GST superfamily, and analyze the metabolism of CAP by recombinant GSTs. RESULTS: The toxicity bioassay showed that CAP was active against M. separata third-instar larvae. LC50 was 17.615, 3.127, and 1.336 mg/L after 24, 48, and 72 h, respectively. Poisoned larvae showed contracted somites and disrupted midgut. Total GST activity in larvae was significantly elevated 24 h after CAP exposure. RNA-sequencing generated 43 055 unigenes with an average length of 1010 bp, and 567 up-regulated and 692 down-regulated DEGs responding to CAP treatment were screened. Thirty-five GST genes were identified from unigenes, including 31 cytosolic, three microsomal, and one unclassified. The expression profile of GST genes was analyzed using samples from different developmental stages, adult tissues, and CAP treatments. Metabolic assays indicated that CAP was depleted by recombinant MseGSTe2 and MseGSTs6. CONCLUSIONS: This study provides insight into the toxicological and transcriptomic effects in M. separata larvae exposed to CAP. The identification and functional characterization of the GST superfamily will improve our understanding of CAP detoxification by GSTs. © 2022 Society of Chemical Industry.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Animais , Diamida/farmacologia , Glutationa , Glutationa Transferase/genética , Inseticidas/farmacologia , Larva/genética , Mariposas/genética , RNA/farmacologia , Transcriptoma , ortoaminobenzoatos
11.
Dev Comp Immunol ; 131: 104361, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35143809

RESUMO

Prophenoloxidase (PPO), an important immunity protein in insects, is mainly produced by hemocytes and released into the hemolymph upon cell lysis. In addition, PPO can also be produced by epidermal cells in the foregut to detoxify the toxic plant secondary metabolites and in the hindgut to kill pathogens through PPO-induced melanization. Previously, we noticed a pair of tubes extended from the larval hindgut became melanized upon staining in dopamine dissolved in 30% ethanol. However, the structure and function of these tubes are largely unknown. In this study, we performed staining of the tubes and the neighboring Malpighian tubule for further confirmation. Eventually, we detected PPO inside epidermal cells of the tubes, and called them as PPO-positive tubes. We observed that the PPO-positive tubes are physically derived from the hindgut but strongly adhere to the Malpighian tubule. Inside the PPO-positive tubes, there is an acellular peritrophic membrane to protect the epidermal cells. Furthermore, the PPO-positive tubes act like a doorkeeper to firstly detoxify the metabolite wastes collected by the Malpighian tubule from the hemolymph.


Assuntos
Lepidópteros , Túbulos de Malpighi , Animais , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Túbulos de Malpighi/metabolismo
12.
Dev Comp Immunol ; 119: 104035, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33535067

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious pathogenic microorganism that causes tremendous loss to sericulture. Previous studies have found that some proteins of serine protease family in the digestive juice of B. mori larvae have anti-BmNPV activity. In our previous publication about proteome analysis of the digestive juice of B. mori larvae, the digestive enzyme trypsin, alkaline A (BmTA) was filtered as a differentially expressed protein possibly involved in BmNPV resistance. Here, the biological characteristics and anti-BmNPV functions of BmTA were comprehensively analysed. The cDNA sequence of BmTA had an ORF of 768 nucleotides encoding 255 amino acid residues. Domain architecture analysis showed that BmTA contained a signal peptide and a typical Tryp_SPc domain. Quantitative real-time PCR analysis showed that BmTA was highly expressed in the larval stages and specifically expressed in the midgut of B. mori larvae. The expression level of BmTA in BmNPV resistant strain A35 was higher than that in susceptible strain P50. After BmNPV infection, the expression of BmTA increased in both strains from 24 to 72 h. Virus amplification analysis showed that the relative levels of VP39 in B. mori larvae and BmN cells infected with the appropriate concentration of recombinant-BmTA-treated BmNPV were significantly lower than in the control groups. Moreover, overexpression of BmTA in BmN cells significantly inhibited the amplification of BmNPV. Taken together, the results of this study indicated that BmTA possessed anti-BmNPV activity in B. mori, which broadens the horizon for virus-resistant breeding of silkworms.


Assuntos
Bombyx/imunologia , Imunidade Inata/imunologia , Proteínas de Insetos/imunologia , Nucleopoliedrovírus/imunologia , Tripsina/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Bombyx/genética , Bombyx/virologia , Linhagem Celular , Sistema Digestório/imunologia , Sistema Digestório/metabolismo , Sistema Digestório/virologia , Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/imunologia , Larva/virologia , Nucleopoliedrovírus/fisiologia , Filogenia , Proteólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tripsina/classificação , Tripsina/genética
13.
Insects ; 11(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121517

RESUMO

Previous studies have revealed that some proteins in Bombyx mori larvae digestive juice show antiviral activity. Here, based on the label-free proteomics data, BmLipase member H-A (BmLHA) was identified as being involved in the response to BmNPV infection in B. mori larvae digestive juice. In the present study, a gene encoding the BmLHA protein in B. mori was characterized. The protein has an open reading fragment of 999 bp, encoding a predicted 332 amino acid residue-protein with a molecular weight of approximately 35.9 kDa. The phylogenetic analysis revealed that BmLHA shares a close genetic distance with Papilio xuthus Lipase member H-A. BmLHA was highly expressed in the middle part of the B. mori gut, and the expression level increased with instar rising in larvae. There was higher expression of BmLHA in A35 than in P50 strains, and it was upregulated in both A35 and P50 strains, following BmNPV infection. The expression level of VP39 decreased significantly in appropriate recombinant-BmLHA-treated groups compared with the PBS-treated group in B. mori larvae and BmN cells. Meanwhile, overexpression of BmLHA significantly reduced the infectivity of BmNPV in BmN cells. These results indicated that BmLHA did not have digestive function but had anti-BmNPV activity. Taken together, our work provides valuable data for the clarification of the molecular characterization BmLHA and supplements research on proteins of anti-BmNPV activity in B. mori.

14.
Front Microbiol ; 11: 1481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695093

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen causing severe economic loss. However, the molecular mechanism of silkworm resistance to BmNPV and the interactions of this virus with the host during infection remain largely unclear. To explore the virus-binding proteins of silkworms, the midgut subcellular component proteins that may interact with BmNPV were analyzed in vitro based on one- and two-dimensional electrophoresis and far-western blotting combined with mass spectrometry (MS). A total of 24 proteins were determined to be specifically bound to budded viruses (BVs) in two subcellular fractions (mitochondria and microsomes). These proteins were involved in viral transportation, energy metabolism, apoptosis and viral propagation, and they responded to BmNPV infection with different expression profiles in different resistant strains. In particular, almost all the identified proteins were downregulated in the A35 strain following BmNPV infection. Interestingly, there were no virus-binding proteins identified in the cytosolic fraction of the silkworm midgut. Two candidate proteins, RACK1 and VDAC2, interacted with BVs, as determined with far-western blotting and reverse far-western blotting. We speculated that the proteins interacting with the virus could either enhance or inhibit the infection of the virus. The data provide comprehensive useful information for further research on the interaction of the host with BmNPV.

15.
J Proteomics ; 210: 103527, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31610263

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen causing severe economic loss. Previous studies have revealed that some proteins in silkworm digestive juice show antiviral activity. In this study, antiviral activity examination of different resistant strains showed that the digestive juice of the resistant strain (A35) had higher inhibition to virus than the susceptible strain (P50). Subsequently, the label-free quantitative proteomics was used to study the midgut digestive juice response to BmNPV infection in P50 and A35 strains. A total of 98 proteins were identified, of which 80 were differentially expressed proteins (DEPs) with 54 enzymes and 26 nonenzymatic proteins by comparing the proteomes of infected and non-infected P50 and A35 silkworms. These DEPs are mainly involved in metabolism, proteolysis, neuroactive ligand receptor interaction, starch and sucrose metabolism and glutathione metabolism. After removing the genetic background and individual immune stress response proteins, 9 DEPs were identified potentially involved in resistance to BmNPV. Further studies showed that a serine protease, an alkaline phosphatase and serine protease inhibitor 2 isoform X1 were differentially expressed in A35 compared to P50 or post BmNPV infection. Taken together, these results provide insights into the potential mechanisms for silkworm digestive juice to provide resistance to BmNPV infection. Signifcance: Bombyx mori nucleopolyhedrovirus (BmNPV) is highly pathogenic, which has a great impact on the sericulture. BmNPV entered the midgut lumen and exposed to digestive juices after oral infection. Previous studies have revealed that some proteins in silkworm digestive juice show antiviral activity, however, current information on the digestive juice proteome of high resistant silkworm strain after BmNPV challenge compared to susceptible strain is incomprehensive. Here, we combined label-free quantification method, bioinformatics, RT-qPCR and western blot analysis and found that BmNPV infection causes some protein changes in the silkworm midgut digestive juice. The DEPs were identified in the digestive juices of different resistant strains following BmNPV infection, and screened out some proteins potentially related to resistance to BmNPV. Three important differentially expression proteins were validated by independent approaches. These findings uncover the potential role of silkworm digestive juice in providing resistance to BmNPV and supplemented the profile of the proteome of the digestive juices in B. mori.


Assuntos
Bombyx/metabolismo , Resistência à Doença , Trato Gastrointestinal/metabolismo , Interações Hospedeiro-Patógeno , Nucleopoliedrovírus/patogenicidade , Proteômica/métodos , Viroses/metabolismo , Animais , Biomarcadores/metabolismo , Bombyx/virologia , Suco Gástrico , Trato Gastrointestinal/virologia , Proteínas de Insetos/metabolismo , Nucleopoliedrovírus/isolamento & purificação , Viroses/virologia
16.
Insects ; 10(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717928

RESUMO

Melanization, an important defense response, plays a vital role in arthropod immunity. It is mediated by serine proteases (SPs) that convert the inactive prophenoloxidase (PPO) to active phenoloxidase (PO) and is tightly regulated by serine protease inhibitors (serpins) which belong to a well distributed superfamily in invertebrates, participating in immune mechanisms and other important physiological processes. Here, we investigated the Bmserpin2 gene which was identified from a transcriptome database in response to Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that Bmserpin2 was expressed in all tissues, with maximum expression in fat body. Upon BmNPV infection, the expression of Bmserpin2 was up-regulated in P50 (susceptible strain) and BC9 (resistant strain) in haemocytes, fat body and the midgut. However, up-regulation was delayed in BC9 (48 or 72 h), in contrast to P50 (24 h), after BmNPV infection. Meanwhile, Bmserpin2 could delay or inhibit melanization in silkworm haemolymph. Significant increased PO activity can be observed in Bmserpin2-depleted haemolymph under NPV infection. Furthermore, the viral genomic DNA copy number was decreased in Bmserpin2-depleted haemolymph. We conclude that Bmserpin2 is an inducible gene which might be involved in the regulation of PPO activation and suppressed melanization, and have a potential role in the innate immune system of B. mori.

17.
Zootaxa ; 4591(1): zootaxa.4591.1.1, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31716071

RESUMO

Actias selene (Hübner) is an important silk-spinning moth. Like other moths, it has innate immunity but no acquired immunity. However, there are few studies on immune-related genes of A. selene. Here, differential expression RNAseq experiment was employed to examine the genes related to different metabolic pathways and to explore the immune mechanism of the A. selene post Beauveria bassiana (Bb) and Micrococcus luteus (ML) stimuli. A total of 64,372,921 clean reads were obtained and 39,057 differentially expressed genes (DEGs) were identified. In the Bb vs. PBS group (PBS as the control), 9,092 genes were up-regulated and 4,438 genes were down-regulated; in the ML vs. PBS group, 5,903 genes were up-regulated and 5,175 genes were down-regulated. The KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) analyses of DEGs confirmed that many DEGs were associated with "Metabolism pathway", "cellular process", "cell" and "catalytic activity". Among them, 194 and 149 differentially expressed genes were related to immunity in the Bb vs. PBS group and ML vs. PBS group, respectively. We verified the reliability of the data with reverse transcription quantitative real-time PCR analysis of randomly selected genes. Furthermore, the phylogenetic tree results showed that HSP90, PGRP and MyD88 genes of A. selene were most closely related to Antheraea pernyi (Guérin-Méneville). These results will provide an overview of the molecular mechanism of A. selene resistance to fungal and bacterial infections as well as an evolutionary aspect of these genes. Moreover, the interrelated trophic mechanisms among different groups of organisms are vital to explore, thus this study will lay a foundation for further studies on the innate immune mechanism of saturniid moths, and provide important theoretical basis for studying the relationship between A. selene and other species.


Assuntos
Beauveria , RNA , Transcriptoma , Animais , Beauveria/genética , Micrococcus luteus , Filogenia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa