RESUMO
We study the addition of electrolytes to surfactant-free microemulsions in the domain where polydisperse pre-Ouzo aggregates are present. As in previous studies, the microemulsion is the ternary system water/ethanol/1-octanol, where ethanol acts as co-solvent. Addition of electrolytes modifies the static X-ray and neutron scattering, and dynamic light scattering patterns, as well as the position of the miscibility gap, where spontaneous emulsification occurs upon dilution with water. All observations can be rationalized considering that electrolytes are either "salting out" the ethanol, which is the main component of the interface stabilizing the aggregates, or producing charge separation via the antagonistic ion effect discovered by Onuki et al. Amphiphilic electrolytes, such as sodium dodecylsulfate or sodium dietheylhexylphosphate, induce a gradual transition towards monodisperse ionic micelles with their characteristic broad scattering "peak". In these micelles the ethanol plays then the role of a cosurfactant. Dynamic light scattering can only be understood by combination of fluctuations of aggregate concentration due to the vicinity of a critical point and in-out fluctuations of ethanol.
RESUMO
A new type of intermediate structure was found in the salt-induced micelle-to-vesicle transition in a catanionic system composed of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) in aqueous solution with an excess of anionic surfactant. The appearance of symmetrically shaped hollow structures, which we named blastulae vesicles, is presented.
RESUMO
In the present contribution, the properties of dipropylene glycol isobornyl ether (Pribelance) are discussed, especially in the context of microemulsion and emulsion formulations. Pribelance is a new low-toxic anti-foaming hydrotrope with excellent co-surfactant properties that has some similarities with long-chain alcohols, but in contrast to them, it is liquid at room temperature. In combination with another, more hydrophilic co-surfactant, it allows significant amounts of oil to be solubilized in water. Possible applications such as in cosmetics, as an anti-foaming agent or as additive to cooling lubricants are discussed. Further potential applications are plasticizers, fermentation systems, agrochemicals and waste-water treatments.
Assuntos
Canfanos/química , Propilenoglicóis/química , Tensoativos/química , Animais , Canfanos/toxicidade , Propilenoglicóis/toxicidade , Coelhos , Ratos , Solubilidade , Tensoativos/toxicidade , TemperaturaRESUMO
The effect of choline addition on the salt-induced super activity of horseradish peroxidase (HRP) is investigated. HRP is presented in the literature as an efficient H(2)O(2) scavenger, and choline is the precursor of glycine betaine, a strong osmoprotectant molecule. Both the regulations of H(2)O(2) and of osmoprotectant concentrations are implicated in plants in order to counteract salt-induced cell damage. For the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), sulfate anions were found to play a crucial role in the increase of HRP activity. This induced super activity can be strongly reduced by adding choline chloride. The phenomena provide an example of physicochemical Hofmeister effects playing a central regulatory role in an important biological system.
Assuntos
Colina/química , Colina/farmacologia , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peroxidase do Rábano Silvestre/efeitos dos fármacos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Proteínas de Plantas/química , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologiaRESUMO
The cytotoxicity of commonly used synthetic surfactants and catanionic mixtures of those was evaluated using MTT on HeLa cells. The 50% inhibition concentration (IC(50)) for MTT reduction was calculated. The effect on chain length increase and inclusion of polyoxyethylene groups on the toxicity was tested on single surfactant systems. A general trend of increasing toxicity with increasing chain length and the presence of polyoxyethylene groups was observed. The measured IC(50) values of catanionic systems lie between those of participating surfactants. The increase in toxicity as the cationic surfactant is added to the anionic one is however not linear. A steep decrease of the IC(50) values (and therefore increase in the toxic properties) is observed immediately already at low concentrations of the cationic surfactants. This behavior is analogous to the enzyme activity in catanionic microemulsions.
Assuntos
Ânions , Cátions , Tensoativos/química , Sistemas de Liberação de Medicamentos , Células HeLa , Humanos , Concentração Inibidora 50 , Mitocôndrias/metabolismo , Polietileno/química , Propriedades de Superfície , Tensão Superficial , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologiaRESUMO
We report the observation of bilayer fragments, some of which close to form vesicles, over a large range of pH at room temperature from mixtures of single-chain biocompatible commercially available nontoxic alkyl carboxylic surfactants after neutralization with HCl. The pH at which the morphological transitions occur is varied only by changing the ratio between two surfactants: the alkyloligoethyleneoxide carboxylate and sodium laurate. The effect of aging of the mixed surfactant systems in the pH region desired for dermatologic application (4.5 < pH < 7) is also studied. Finally, we show results of cytotoxicity studies on the surfactant mixtures.
Assuntos
Ácidos Carboxílicos/química , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Materiais Biocompatíveis/química , Microscopia Crioeletrônica , Células HeLa , Humanos , Ácido Clorídrico/química , Ácidos Láuricos/química , Luz , Microscopia Eletrônica de Transmissão , Transição de Fase , Tensoativos , Sais de Tetrazólio/química , Sais de Tetrazólio/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Fatores de TempoRESUMO
The transition of ionic micelles to vesicles with added salts is explored in this paper. The catanionic surfactant solution was comprised of sodium dodecylsulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) with an excess of SDS. The micellar size increased with concentration for all salts. No anion specificity was found, probably because of the excess of SDS. However, when the cation of the added salt was varied, large differences were observed in the hydrodynamic radii of the aggregates. A classification of the cations according to their ability to increase the measured hydrodynamic radii follows a Hofmeister series. The change in aggregate size can be explained by modified counterion binding and dehydration of the surfactant headgroups.
RESUMO
In the present work hydrophobic dyes, i.e. disperse red 13 (DR-13; (2-[4-(2-chloro-4-nitrophenylazo)-N-ethylphenylamino]ethanol) and Jaune au gras W1201 (1H-indene-1,3(2H)-dione,2-(2-quinolinyl)), are solubilized in water with the help of different additives: acetone and 1-propanol as typical cosolvents, sodium xylene sulfonate (SXS) as a representative of a classical hydrotrope, sodium dodecyl sulfate (SDS) as a typical surfactant, and finally some "solvosurfactants" [ propylene glycol monoalkyl ether derivatives (CiPOj: i = 1, j = 1 and 3; i = 3, j = 1 and 2; i = 4 and tertio-butyl, j = 1) and 1-propoxy-2-ethanol (C3EO1)]. These solvosurfactants are short amphiphiles that do not form well-defined structures in water such as micelles. For all additives an exponential increase in the solubilizations of the two studied hydrophobic dyes was observed when their concentrations in water were increased. Except for the SDS solution, no difference in the overall shapes of the solubilization curves (dye solubility against additive concentration) was found. All the studied molecules were classified according to their hydrotropic efficiencies, i.e., their abilities to solubilize a hydrophobic, sparingly soluble compound in water. The volume of the hydrophobic parts of the studied additives, roughly evaluated by simple calculations, was found to influence strongly the hydrotropic efficiency; i.e. the larger the hydrophobic part of the additive, the better the hydrotropic efficiency. By contrast, the hydrophilic part carrying a charge or not is of minor importance. Taking the hydrophobic part of the molecules as the key parameter, the water solubilization efficiency of cosolvents, hydrotropes, and solvosurfactants can be described in a coherent way.
RESUMO
Synopsis Reduction of keratin cystine by thioglycolic acid incorporated in microemulsions of the water/sodium dodecilsulphate/n-pentanol/n-dodecane system has been determined. The results obtained have been interpreted in relation to the properties of the reaction media. Microemulsions with constant oil-to-surface active mixture weight ratios (R(o/s)) and different concentrations of water were chosen as reaction media. At low water concentrations a steep increase in reactivity with the increase of water was observed at all values of R(o/s). However it was more pronounced the higher the oil content. A relation between maximum cysteine formation and percolative behaviour of the microemulsion was found at high R(o/s) values.
RESUMO
Summary The activity of thioglycolic acid, incorporated in a microemulsion, towards cystine residues present in keratin proteins has been investigated. In an attempt to relate the structural state of the microemulsions to cystine reactivity, an appropriate model system showing a large microemulsion domain with diverse structures was chosen. The realm of preferentially hydrocarbon-continuous microemulsion-type media was found to induce the highest activity.