Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 109(12): 120404, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005928

RESUMO

We report an experimental test of the topological phase predicted by He and McKellar in 1993 and by Wilkens in 1994: this phase, which appears when an electric dipole propagates in a magnetic field, is connected to the Aharonov-Casher effect by electric-magnetic duality. The He-McKellar-Wilkens phase is quite small, at most 27 mrad in our experiment, and this experiment requires the high phase sensitivity of our atom interferometer with spatially separated arms as well as symmetry reversals such as the direction of the electric and magnetic fields. The measured value of the He-McKellar-Wilkens phase differs by 31% from its theoretical value, a difference possibly due to some as yet uncontrolled systematic errors.

2.
Phys Rev Lett ; 98(24): 240405, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17677948

RESUMO

We report the first measurements of the index of refraction of gases for lithium waves. Using an atom interferometer, we have measured the real and imaginary parts of the index of refraction n for argon, krypton, and xenon as a function of the gas density for several velocities of the lithium beam. The linear dependence of (n-1) with the gas density is well verified. The total collision cross section deduced from the imaginary part of (n-1) is in very good agreement with traditional measurements of this quantity. Finally, the real and imaginary parts of (n-1) and their ratio rho exhibit glory oscillations, in good agreement with calculations.

3.
J Chem Phys ; 122(9): 094308, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15836129

RESUMO

Supersonic expansion is a very powerful tool to produce an atomic beam with a well defined velocity and, by seeding a test gas in such an expansion, the energy of the test gas can be transferred, at least partially, to the very-low-temperature carrier gas. The case usually studied is the one of a heavy gas seeded in a light carrier gas and, in this case, the parallel temperature of the seeded gas is always larger than the one of the carrier gas. In the present paper, we study the opposite case which has received less attention: when a light gas is seeded in a heavier carrier gas, the parallel temperature can be substantially lower for the seeded gas than for the carrier gas. This effect has been first observed by Campargue and co-workers in 2000, in the case of atomic oxygen seeded in argon. In the present paper, we develop a theoretical analysis of this effect, in the high dilution limit, and we compare our theoretical results to several experimental observations, including a set of measurements we have made on a beam of lithium seeded in argon. The agreement between theory and experiments is good.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa