Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L797-L811, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28283476

RESUMO

A thin fluid layer in alveoli is normal and results from a balance of fluid entry and fluid uptake by transepithelial salt and water reabsorption. Conventional wisdom suggests the reabsorption is via epithelial Na+ channels (ENaC), but if all Na+ reabsorption were via ENaC, then amiloride, an ENaC inhibitor, should block alveolar fluid clearance (AFC). However, amiloride blocks only half of AFC. The reason for failure to block is clear from single-channel measurements from alveolar epithelial cells: ENaC channels are observed, but another channel is present at the same frequency that is nonselective for Na+ over K+, has a larger conductance, and has shorter open and closed times. These two channel types are known as highly selective channels (HSC) and nonselective cation channels (NSC). HSC channels are made up of three ENaC subunits since knocking down any of the subunits reduces HSC number. NSC channels contain α-ENaC since knocking down α-ENaC reduces the number of NSC (knocking down ß- or γ-ENaC has no effect on NSC, but the molecular composition of NSC channels remains unclear). We show that NSC channels consist of at least one α-ENaC and one or more acid-sensing ion channel 1a (ASIC1a) proteins. Knocking down either α-ENaC or ASIC1a reduces both NSC and HSC number, and no NSC channels are observable in single-channel patches on lung slices from ASIC1a knockout mice. AFC is reduced in knockout mice, and wet wt-to-dry wt ratio is increased, but the percentage increase in wet wt-to-dry wt ratio is larger than expected based on the reduction in AFC.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Epiteliais de Sódio/metabolismo , Alvéolos Pulmonares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Oxigênio/farmacologia , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Venenos de Serpentes/toxicidade , Água/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 308(9): L943-52, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25713321

RESUMO

Amiloride-sensitive epithelial Na(+) channels (ENaC) regulate fluid balance in the alveoli and are regulated by oxidative stress. Since glutathione (GSH) is the predominant antioxidant in the lungs, we proposed that changes in glutathione redox potential (Eh) would alter cell signaling and have an effect on ENaC open probability (Po). In the present study, we used single channel patch-clamp recordings to examine the effect of oxidative stress, via direct application of glutathione disulfide (GSSG), on ENaC activity. We found a linear decrease in ENaC activity as the GSH/GSSG Eh became less negative (n = 21; P < 0.05). Treatment of 400 µM GSSG to the cell bath significantly decreased ENaC Po from 0.39 ± 0.06 to 0.13 ± 0.05 (n = 8; P < 0.05). Likewise, back-filling recording electrodes with 400 µM GSSG reduced ENaC Po from 0.32 ± 0.08 to 0.17 ± 0.05 (n = 10; P < 0.05), thus implicating GSSG as an important regulatory factor. Biochemical assays indicated that oxidizing potentials promote S-glutathionylation of ENaC and irreversible oxidation of cysteine residues with N-ethylmaleimide blocked the effects of GSSG on ENaC Po. Additionally, real-time imaging studies showed that GSSG impairs alveolar fluid clearance in vivo as opposed to GSH, which did not impair clearance. Taken together, these data show that glutathione Eh is an important determinant of alveolar fluid clearance in vivo.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Dissulfeto de Glutationa/metabolismo , Alvéolos Pulmonares/metabolismo , Mucosa Respiratória/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Antioxidantes/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Bloqueadores do Canal de Sódio Epitelial , Feminino , Peróxido de Hidrogênio/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo , Técnicas de Patch-Clamp , Alvéolos Pulmonares/citologia , Ratos , Ratos Sprague-Dawley
4.
J Vis Exp ; (113)2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27500410

RESUMO

At birth, the lung undergoes a profound phenotypic switch from secretion to absorption, which allows for adaptation to breathing independently. Promoting and sustaining this phenotype is critically important in normal alveolar growth and gas exchange throughout life. Several in vitro studies have characterized the role of key regulatory proteins, signaling molecules, and steroid hormones that can influence the rate of lung fluid clearance. However, in vivo examinations must be performed to evaluate whether these regulatory factors play important physiological roles in regulating perinatal lung liquid absorption. As such, the utilization of real time X-ray imaging to determine perinatal lung fluid clearance, or pulmonary edema, represents a technological advancement in the field. Herein, we explain and illustrate an approach to assess the rate of alveolar lung fluid clearance and alveolar flooding in C57BL/6 mice at post natal day 10 using X-ray imaging and analysis. Successful implementation of this protocol requires prior approval from institutional animal care and use committees (IACUC), an in vivo small animal X-ray imaging system, and compatible molecular imaging software.


Assuntos
Pulmão/diagnóstico por imagem , Imagem Molecular/métodos , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Edema Pulmonar/diagnóstico por imagem , Software , Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa